ComfyUI/comfy_extras/nodes_kandinsky5.py
Jukka Seppänen fd109325db
Kandinsky5 model support (#10988)
* Add Kandinsky5 model support

lite and pro T2V tested to work

* Update kandinsky5.py

* Fix fp8

* Fix fp8_scaled text encoder

* Add transformer_options for attention

* Code cleanup, optimizations, use fp32 for all layers originally at fp32

* ImageToVideo -node

* Fix I2V, add necessary latent post process nodes

* Support text to image model

* Support block replace patches (SLG mostly)

* Support official LoRAs

* Don't scale RoPE for lite model as that just doesn't work...

* Update supported_models.py

* Rever RoPE scaling to simpler one

* Fix typo

* Handle latent dim difference for image model in the VAE instead

* Add node to use different prompts for clip_l and qwen25_7b

* Reduce peak VRAM usage a bit

* Further reduce peak VRAM consumption by chunking ffn

* Update chunking

* Update memory_usage_factor

* Code cleanup, don't force the fp32 layers as it has minimal effect

* Allow for stronger changes with first frames normalization

Default values are too weak for any meaningful changes, these should probably be exposed as advanced node options when that's available.

* Add image model's own chat template, remove unused image2video template

* Remove hard error in ReplaceVideoLatentFrames -node

* Update kandinsky5.py

* Update supported_models.py

* Fix typos in prompt template

They were now fixed in the original repository as well

* Update ReplaceVideoLatentFrames

Add tooltips
Make source optional
Better handle negative index

* Rename NormalizeVideoLatentFrames -node

For bit better clarity what it does

* Fix NormalizeVideoLatentStart node out on non-op
2025-12-05 22:20:22 -05:00

137 lines
6.0 KiB
Python

import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.utils
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
class Kandinsky5ImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Kandinsky5ImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=768, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=512, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("start_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent", tooltip="Empty video latent"),
io.Latent.Output(display_name="cond_latent", tooltip="Clean encoded start images, used to replace the noisy start of the model output latents"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
cond_latent_out = {}
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encoded = vae.encode(start_image[:, :, :, :3])
cond_latent_out["samples"] = encoded
mask = torch.ones((1, 1, latent.shape[2], latent.shape[-2], latent.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
positive = node_helpers.conditioning_set_values(positive, {"time_dim_replace": encoded, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"time_dim_replace": encoded, "concat_mask": mask})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent, cond_latent_out)
def adaptive_mean_std_normalization(source, reference, clump_mean_low=0.3, clump_mean_high=0.35, clump_std_low=0.35, clump_std_high=0.5):
source_mean = source.mean(dim=(1, 3, 4), keepdim=True) # mean over C, H, W
source_std = source.std(dim=(1, 3, 4), keepdim=True) # std over C, H, W
reference_mean = torch.clamp(reference.mean(), source_mean - clump_mean_low, source_mean + clump_mean_high)
reference_std = torch.clamp(reference.std(), source_std - clump_std_low, source_std + clump_std_high)
# normalization
normalized = (source - source_mean) / (source_std + 1e-8)
normalized = normalized * reference_std + reference_mean
return normalized
class NormalizeVideoLatentStart(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="NormalizeVideoLatentStart",
category="conditioning/video_models",
description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.",
inputs=[
io.Latent.Input("latent"),
io.Int.Input("start_frame_count", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames to normalize, counted from the start"),
io.Int.Input("reference_frame_count", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames after the start frames to use as reference"),
],
outputs=[
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, latent, start_frame_count, reference_frame_count) -> io.NodeOutput:
if latent["samples"].shape[2] <= 1:
return io.NodeOutput(latent)
s = latent.copy()
samples = latent["samples"].clone()
first_frames = samples[:, :, :start_frame_count]
reference_frames_data = samples[:, :, start_frame_count:start_frame_count+min(reference_frame_count, samples.shape[2]-1)]
normalized_first_frames = adaptive_mean_std_normalization(first_frames, reference_frames_data)
samples[:, :, :start_frame_count] = normalized_first_frames
s["samples"] = samples
return io.NodeOutput(s)
class CLIPTextEncodeKandinsky5(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CLIPTextEncodeKandinsky5",
category="advanced/conditioning/kandinsky5",
inputs=[
io.Clip.Input("clip"),
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
io.String.Input("qwen25_7b", multiline=True, dynamic_prompts=True),
],
outputs=[
io.Conditioning.Output(),
],
)
@classmethod
def execute(cls, clip, clip_l, qwen25_7b) -> io.NodeOutput:
tokens = clip.tokenize(clip_l)
tokens["qwen25_7b"] = clip.tokenize(qwen25_7b)["qwen25_7b"]
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
class Kandinsky5Extension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
Kandinsky5ImageToVideo,
NormalizeVideoLatentStart,
CLIPTextEncodeKandinsky5,
]
async def comfy_entrypoint() -> Kandinsky5Extension:
return Kandinsky5Extension()