mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 14:04:26 +08:00
549 lines
22 KiB
Python
549 lines
22 KiB
Python
from torch import nn
|
|
import torch
|
|
from typing import Tuple, Optional
|
|
from einops import rearrange
|
|
import torch.nn.functional as F
|
|
import math
|
|
from .model import WanModel, sinusoidal_embedding_1d
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
import comfy.model_management
|
|
|
|
class CausalConv1d(nn.Module):
|
|
|
|
def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode="replicate", operations=None, **kwargs):
|
|
super().__init__()
|
|
|
|
self.pad_mode = pad_mode
|
|
padding = (kernel_size - 1, 0) # T
|
|
self.time_causal_padding = padding
|
|
|
|
self.conv = operations.Conv1d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
|
|
|
def forward(self, x):
|
|
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
|
return self.conv(x)
|
|
|
|
|
|
class FaceEncoder(nn.Module):
|
|
def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, dtype=None, device=None, operations=None):
|
|
factory_kwargs = {"dtype": dtype, "device": device}
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
self.conv1_local = CausalConv1d(in_dim, 1024 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
|
|
self.norm1 = operations.LayerNorm(hidden_dim // 8, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
self.act = nn.SiLU()
|
|
self.conv2 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
|
|
self.conv3 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
|
|
|
|
self.out_proj = operations.Linear(1024, hidden_dim, **factory_kwargs)
|
|
self.norm1 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
|
|
self.norm2 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
|
|
self.norm3 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
|
|
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
|
|
|
|
def forward(self, x):
|
|
|
|
x = rearrange(x, "b t c -> b c t")
|
|
b, c, t = x.shape
|
|
|
|
x = self.conv1_local(x)
|
|
x = rearrange(x, "b (n c) t -> (b n) t c", n=self.num_heads)
|
|
|
|
x = self.norm1(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, "b t c -> b c t")
|
|
x = self.conv2(x)
|
|
x = rearrange(x, "b c t -> b t c")
|
|
x = self.norm2(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, "b t c -> b c t")
|
|
x = self.conv3(x)
|
|
x = rearrange(x, "b c t -> b t c")
|
|
x = self.norm3(x)
|
|
x = self.act(x)
|
|
x = self.out_proj(x)
|
|
x = rearrange(x, "(b n) t c -> b t n c", b=b)
|
|
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
|
|
x = torch.cat([x, padding], dim=-2)
|
|
x_local = x.clone()
|
|
|
|
return x_local
|
|
|
|
|
|
def get_norm_layer(norm_layer, operations=None):
|
|
"""
|
|
Get the normalization layer.
|
|
|
|
Args:
|
|
norm_layer (str): The type of normalization layer.
|
|
|
|
Returns:
|
|
norm_layer (nn.Module): The normalization layer.
|
|
"""
|
|
if norm_layer == "layer":
|
|
return operations.LayerNorm
|
|
elif norm_layer == "rms":
|
|
return operations.RMSNorm
|
|
else:
|
|
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
|
|
|
|
|
|
class FaceAdapter(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_dim: int,
|
|
heads_num: int,
|
|
qk_norm: bool = True,
|
|
qk_norm_type: str = "rms",
|
|
num_adapter_layers: int = 1,
|
|
dtype=None, device=None, operations=None
|
|
):
|
|
|
|
factory_kwargs = {"dtype": dtype, "device": device}
|
|
super().__init__()
|
|
self.hidden_size = hidden_dim
|
|
self.heads_num = heads_num
|
|
self.fuser_blocks = nn.ModuleList(
|
|
[
|
|
FaceBlock(
|
|
self.hidden_size,
|
|
self.heads_num,
|
|
qk_norm=qk_norm,
|
|
qk_norm_type=qk_norm_type,
|
|
operations=operations,
|
|
**factory_kwargs,
|
|
)
|
|
for _ in range(num_adapter_layers)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
motion_embed: torch.Tensor,
|
|
idx: int,
|
|
freqs_cis_q: Tuple[torch.Tensor, torch.Tensor] = None,
|
|
freqs_cis_k: Tuple[torch.Tensor, torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
|
|
return self.fuser_blocks[idx](x, motion_embed, freqs_cis_q, freqs_cis_k)
|
|
|
|
|
|
|
|
class FaceBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
heads_num: int,
|
|
qk_norm: bool = True,
|
|
qk_norm_type: str = "rms",
|
|
qk_scale: float = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
device: Optional[torch.device] = None,
|
|
operations=None
|
|
):
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
super().__init__()
|
|
|
|
self.deterministic = False
|
|
self.hidden_size = hidden_size
|
|
self.heads_num = heads_num
|
|
head_dim = hidden_size // heads_num
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
self.linear1_kv = operations.Linear(hidden_size, hidden_size * 2, **factory_kwargs)
|
|
self.linear1_q = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
|
|
|
|
self.linear2 = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
|
|
|
|
qk_norm_layer = get_norm_layer(qk_norm_type, operations=operations)
|
|
self.q_norm = (
|
|
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
|
)
|
|
self.k_norm = (
|
|
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
|
)
|
|
|
|
self.pre_norm_feat = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
|
|
self.pre_norm_motion = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
motion_vec: torch.Tensor,
|
|
motion_mask: Optional[torch.Tensor] = None,
|
|
# use_context_parallel=False,
|
|
) -> torch.Tensor:
|
|
|
|
B, T, N, C = motion_vec.shape
|
|
T_comp = T
|
|
|
|
x_motion = self.pre_norm_motion(motion_vec)
|
|
x_feat = self.pre_norm_feat(x)
|
|
|
|
kv = self.linear1_kv(x_motion)
|
|
q = self.linear1_q(x_feat)
|
|
|
|
k, v = rearrange(kv, "B L N (K H D) -> K B L N H D", K=2, H=self.heads_num)
|
|
q = rearrange(q, "B S (H D) -> B S H D", H=self.heads_num)
|
|
|
|
# Apply QK-Norm if needed.
|
|
q = self.q_norm(q).to(v)
|
|
k = self.k_norm(k).to(v)
|
|
|
|
k = rearrange(k, "B L N H D -> (B L) N H D")
|
|
v = rearrange(v, "B L N H D -> (B L) N H D")
|
|
|
|
q = rearrange(q, "B (L S) H D -> (B L) S (H D)", L=T_comp)
|
|
|
|
attn = optimized_attention(q, k, v, heads=self.heads_num)
|
|
|
|
attn = rearrange(attn, "(B L) S C -> B (L S) C", L=T_comp)
|
|
|
|
output = self.linear2(attn)
|
|
|
|
if motion_mask is not None:
|
|
output = output * rearrange(motion_mask, "B T H W -> B (T H W)").unsqueeze(-1)
|
|
|
|
return output
|
|
|
|
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/upfirdn2d/upfirdn2d.py#L162
|
|
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
|
_, minor, in_h, in_w = input.shape
|
|
kernel_h, kernel_w = kernel.shape
|
|
|
|
out = input.view(-1, minor, in_h, 1, in_w, 1)
|
|
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
|
|
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
|
|
|
|
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
|
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0)]
|
|
|
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
|
out = F.conv2d(out, w)
|
|
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
|
|
return out[:, :, ::down_y, ::down_x]
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
|
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
|
|
|
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/fused_act/fused_act.py#L81
|
|
class FusedLeakyReLU(torch.nn.Module):
|
|
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5, dtype=None, device=None):
|
|
super().__init__()
|
|
self.bias = torch.nn.Parameter(torch.empty(1, channel, 1, 1, dtype=dtype, device=device))
|
|
self.negative_slope = negative_slope
|
|
self.scale = scale
|
|
|
|
def forward(self, input):
|
|
return fused_leaky_relu(input, comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype), self.negative_slope, self.scale)
|
|
|
|
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
|
return F.leaky_relu(input + bias, negative_slope) * scale
|
|
|
|
class Blur(torch.nn.Module):
|
|
def __init__(self, kernel, pad, dtype=None, device=None):
|
|
super().__init__()
|
|
kernel = torch.tensor(kernel, dtype=dtype, device=device)
|
|
kernel = kernel[None, :] * kernel[:, None]
|
|
kernel = kernel / kernel.sum()
|
|
self.register_buffer('kernel', kernel)
|
|
self.pad = pad
|
|
|
|
def forward(self, input):
|
|
return upfirdn2d(input, comfy.model_management.cast_to(self.kernel, dtype=input.dtype, device=input.device), pad=self.pad)
|
|
|
|
#https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L590
|
|
class ScaledLeakyReLU(torch.nn.Module):
|
|
def __init__(self, negative_slope=0.2):
|
|
super().__init__()
|
|
self.negative_slope = negative_slope
|
|
|
|
def forward(self, input):
|
|
return F.leaky_relu(input, negative_slope=self.negative_slope)
|
|
|
|
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L605
|
|
class EqualConv2d(torch.nn.Module):
|
|
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(torch.empty(out_channel, in_channel, kernel_size, kernel_size, device=device, dtype=dtype))
|
|
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
|
self.stride = stride
|
|
self.padding = padding
|
|
self.bias = torch.nn.Parameter(torch.empty(out_channel, device=device, dtype=dtype)) if bias else None
|
|
|
|
def forward(self, input):
|
|
if self.bias is None:
|
|
bias = None
|
|
else:
|
|
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype)
|
|
|
|
return F.conv2d(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias, stride=self.stride, padding=self.padding)
|
|
|
|
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L134
|
|
class EqualLinear(torch.nn.Module):
|
|
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(torch.empty(out_dim, in_dim, device=device, dtype=dtype))
|
|
self.bias = torch.nn.Parameter(torch.empty(out_dim, device=device, dtype=dtype)) if bias else None
|
|
self.activation = activation
|
|
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
|
self.lr_mul = lr_mul
|
|
|
|
def forward(self, input):
|
|
if self.bias is None:
|
|
bias = None
|
|
else:
|
|
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype) * self.lr_mul
|
|
|
|
if self.activation:
|
|
out = F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale)
|
|
return fused_leaky_relu(out, bias)
|
|
return F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias)
|
|
|
|
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L654
|
|
class ConvLayer(torch.nn.Sequential):
|
|
def __init__(self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, dtype=None, device=None, operations=None):
|
|
layers = []
|
|
|
|
if downsample:
|
|
factor = 2
|
|
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
|
layers.append(Blur(blur_kernel, pad=((p + 1) // 2, p // 2)))
|
|
stride, padding = 2, 0
|
|
else:
|
|
stride, padding = 1, kernel_size // 2
|
|
|
|
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias and not activate, dtype=dtype, device=device, operations=operations))
|
|
|
|
if activate:
|
|
layers.append(FusedLeakyReLU(out_channel) if bias else ScaledLeakyReLU(0.2))
|
|
|
|
super().__init__(*layers)
|
|
|
|
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L704
|
|
class ResBlock(torch.nn.Module):
|
|
def __init__(self, in_channel, out_channel, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.conv1 = ConvLayer(in_channel, in_channel, 3, dtype=dtype, device=device, operations=operations)
|
|
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, dtype=dtype, device=device, operations=operations)
|
|
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False, dtype=dtype, device=device, operations=operations)
|
|
|
|
def forward(self, input):
|
|
out = self.conv2(self.conv1(input))
|
|
skip = self.skip(input)
|
|
return (out + skip) / math.sqrt(2)
|
|
|
|
|
|
class EncoderApp(torch.nn.Module):
|
|
def __init__(self, w_dim=512, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
kwargs = {"device": device, "dtype": dtype, "operations": operations}
|
|
|
|
self.convs = torch.nn.ModuleList([
|
|
ConvLayer(3, 32, 1, **kwargs), ResBlock(32, 64, **kwargs),
|
|
ResBlock(64, 128, **kwargs), ResBlock(128, 256, **kwargs),
|
|
ResBlock(256, 512, **kwargs), ResBlock(512, 512, **kwargs),
|
|
ResBlock(512, 512, **kwargs), ResBlock(512, 512, **kwargs),
|
|
EqualConv2d(512, w_dim, 4, padding=0, bias=False, **kwargs)
|
|
])
|
|
|
|
def forward(self, x):
|
|
h = x
|
|
for conv in self.convs:
|
|
h = conv(h)
|
|
return h.squeeze(-1).squeeze(-1)
|
|
|
|
class Encoder(torch.nn.Module):
|
|
def __init__(self, dim=512, motion_dim=20, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.net_app = EncoderApp(dim, dtype=dtype, device=device, operations=operations)
|
|
self.fc = torch.nn.Sequential(*[EqualLinear(dim, dim, dtype=dtype, device=device, operations=operations) for _ in range(4)] + [EqualLinear(dim, motion_dim, dtype=dtype, device=device, operations=operations)])
|
|
|
|
def encode_motion(self, x):
|
|
return self.fc(self.net_app(x))
|
|
|
|
class Direction(torch.nn.Module):
|
|
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(torch.empty(512, motion_dim, device=device, dtype=dtype))
|
|
self.motion_dim = motion_dim
|
|
|
|
def forward(self, input):
|
|
stabilized_weight = comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) + 1e-8 * torch.eye(512, self.motion_dim, device=input.device, dtype=input.dtype)
|
|
Q, _ = torch.linalg.qr(stabilized_weight.float())
|
|
if input is None:
|
|
return Q
|
|
return torch.sum(input.unsqueeze(-1) * Q.T.to(input.dtype), dim=1)
|
|
|
|
class Synthesis(torch.nn.Module):
|
|
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.direction = Direction(motion_dim, dtype=dtype, device=device, operations=operations)
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(self, style_dim=512, motion_dim=20, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.enc = Encoder(style_dim, motion_dim, dtype=dtype, device=device, operations=operations)
|
|
self.dec = Synthesis(motion_dim, dtype=dtype, device=device, operations=operations)
|
|
|
|
def get_motion(self, img):
|
|
motion_feat = self.enc.encode_motion(img)
|
|
return self.dec.direction(motion_feat)
|
|
|
|
class AnimateWanModel(WanModel):
|
|
r"""
|
|
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_type='animate',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
flf_pos_embed_token_number=None,
|
|
motion_encoder_dim=512,
|
|
image_model=None,
|
|
device=None,
|
|
dtype=None,
|
|
operations=None,
|
|
):
|
|
|
|
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
|
|
|
self.pose_patch_embedding = operations.Conv3d(
|
|
16, dim, kernel_size=patch_size, stride=patch_size, device=device, dtype=dtype
|
|
)
|
|
|
|
self.motion_encoder = Generator(style_dim=512, motion_dim=20, device=device, dtype=dtype, operations=operations)
|
|
|
|
self.face_adapter = FaceAdapter(
|
|
heads_num=self.num_heads,
|
|
hidden_dim=self.dim,
|
|
num_adapter_layers=self.num_layers // 5,
|
|
device=device, dtype=dtype, operations=operations
|
|
)
|
|
|
|
self.face_encoder = FaceEncoder(
|
|
in_dim=motion_encoder_dim,
|
|
hidden_dim=self.dim,
|
|
num_heads=4,
|
|
device=device, dtype=dtype, operations=operations
|
|
)
|
|
|
|
def after_patch_embedding(self, x, pose_latents, face_pixel_values):
|
|
if pose_latents is not None:
|
|
pose_latents = self.pose_patch_embedding(pose_latents)
|
|
x[:, :, 1:pose_latents.shape[2] + 1] += pose_latents[:, :, :x.shape[2] - 1]
|
|
|
|
if face_pixel_values is None:
|
|
return x, None
|
|
|
|
b, c, T, h, w = face_pixel_values.shape
|
|
face_pixel_values = rearrange(face_pixel_values, "b c t h w -> (b t) c h w")
|
|
encode_bs = 8
|
|
face_pixel_values_tmp = []
|
|
for i in range(math.ceil(face_pixel_values.shape[0] / encode_bs)):
|
|
face_pixel_values_tmp.append(self.motion_encoder.get_motion(face_pixel_values[i * encode_bs: (i + 1) * encode_bs]))
|
|
|
|
motion_vec = torch.cat(face_pixel_values_tmp)
|
|
|
|
motion_vec = rearrange(motion_vec, "(b t) c -> b t c", t=T)
|
|
motion_vec = self.face_encoder(motion_vec)
|
|
|
|
B, L, H, C = motion_vec.shape
|
|
pad_face = torch.zeros(B, 1, H, C).type_as(motion_vec)
|
|
motion_vec = torch.cat([pad_face, motion_vec], dim=1)
|
|
|
|
if motion_vec.shape[1] < x.shape[2]:
|
|
B, L, H, C = motion_vec.shape
|
|
pad = torch.zeros(B, x.shape[2] - motion_vec.shape[1], H, C).type_as(motion_vec)
|
|
motion_vec = torch.cat([motion_vec, pad], dim=1)
|
|
else:
|
|
motion_vec = motion_vec[:, :x.shape[2]]
|
|
return x, motion_vec
|
|
|
|
def forward_orig(
|
|
self,
|
|
x,
|
|
t,
|
|
context,
|
|
clip_fea=None,
|
|
pose_latents=None,
|
|
face_pixel_values=None,
|
|
freqs=None,
|
|
transformer_options={},
|
|
**kwargs,
|
|
):
|
|
# embeddings
|
|
x = self.patch_embedding(x.float()).to(x.dtype)
|
|
x, motion_vec = self.after_patch_embedding(x, pose_latents, face_pixel_values)
|
|
grid_sizes = x.shape[2:]
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
# time embeddings
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
|
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
|
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
|
|
|
full_ref = None
|
|
if self.ref_conv is not None:
|
|
full_ref = kwargs.get("reference_latent", None)
|
|
if full_ref is not None:
|
|
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
|
|
x = torch.concat((full_ref, x), dim=1)
|
|
|
|
# context
|
|
context = self.text_embedding(context)
|
|
|
|
context_img_len = None
|
|
if clip_fea is not None:
|
|
if self.img_emb is not None:
|
|
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
|
context = torch.concat([context_clip, context], dim=1)
|
|
context_img_len = clip_fea.shape[-2]
|
|
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
for i, block in enumerate(self.blocks):
|
|
if ("double_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
|
|
return out
|
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
|
x = out["img"]
|
|
else:
|
|
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
|
|
|
|
if i % 5 == 0 and motion_vec is not None:
|
|
x = x + self.face_adapter.fuser_blocks[i // 5](x, motion_vec)
|
|
|
|
# head
|
|
x = self.head(x, e)
|
|
|
|
if full_ref is not None:
|
|
x = x[:, full_ref.shape[1]:]
|
|
|
|
# unpatchify
|
|
x = self.unpatchify(x, grid_sizes)
|
|
return x
|