mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 05:54:24 +08:00
* feat(api-nodes): add support for seedance-1-0-pro-fast model * feat(api-nodes): add support for seedream-4.5 model
964 lines
35 KiB
Python
964 lines
35 KiB
Python
import logging
|
|
import math
|
|
|
|
import torch
|
|
from typing_extensions import override
|
|
|
|
from comfy_api.latest import IO, ComfyExtension, Input
|
|
from comfy_api_nodes.apis.bytedance_api import (
|
|
RECOMMENDED_PRESETS,
|
|
RECOMMENDED_PRESETS_SEEDREAM_4,
|
|
VIDEO_TASKS_EXECUTION_TIME,
|
|
Image2ImageTaskCreationRequest,
|
|
Image2VideoTaskCreationRequest,
|
|
ImageTaskCreationResponse,
|
|
Seedream4Options,
|
|
Seedream4TaskCreationRequest,
|
|
TaskCreationResponse,
|
|
TaskImageContent,
|
|
TaskImageContentUrl,
|
|
TaskStatusResponse,
|
|
TaskTextContent,
|
|
Text2ImageTaskCreationRequest,
|
|
Text2VideoTaskCreationRequest,
|
|
)
|
|
from comfy_api_nodes.util import (
|
|
ApiEndpoint,
|
|
download_url_to_image_tensor,
|
|
download_url_to_video_output,
|
|
get_number_of_images,
|
|
image_tensor_pair_to_batch,
|
|
poll_op,
|
|
sync_op,
|
|
upload_images_to_comfyapi,
|
|
validate_image_aspect_ratio,
|
|
validate_image_dimensions,
|
|
validate_string,
|
|
)
|
|
|
|
BYTEPLUS_IMAGE_ENDPOINT = "/proxy/byteplus/api/v3/images/generations"
|
|
|
|
# Long-running tasks endpoints(e.g., video)
|
|
BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks"
|
|
BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id}
|
|
|
|
|
|
def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
|
|
if response.error:
|
|
error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}"
|
|
logging.info(error_msg)
|
|
raise RuntimeError(error_msg)
|
|
logging.info("ByteDance task succeeded, image URL: %s", response.data[0]["url"])
|
|
return response.data[0]["url"]
|
|
|
|
|
|
class ByteDanceImageNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceImageNode",
|
|
display_name="ByteDance Image",
|
|
category="api node/image/ByteDance",
|
|
description="Generate images using ByteDance models via api based on prompt",
|
|
inputs=[
|
|
IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
tooltip="The text prompt used to generate the image",
|
|
),
|
|
IO.Combo.Input(
|
|
"size_preset",
|
|
options=[label for label, _, _ in RECOMMENDED_PRESETS],
|
|
tooltip="Pick a recommended size. Select Custom to use the width and height below",
|
|
),
|
|
IO.Int.Input(
|
|
"width",
|
|
default=1024,
|
|
min=512,
|
|
max=2048,
|
|
step=64,
|
|
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
|
|
),
|
|
IO.Int.Input(
|
|
"height",
|
|
default=1024,
|
|
min=512,
|
|
max=2048,
|
|
step=64,
|
|
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation",
|
|
optional=True,
|
|
),
|
|
IO.Float.Input(
|
|
"guidance_scale",
|
|
default=2.5,
|
|
min=1.0,
|
|
max=10.0,
|
|
step=0.01,
|
|
display_mode=IO.NumberDisplay.number,
|
|
tooltip="Higher value makes the image follow the prompt more closely",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the image',
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Image.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
size_preset: str,
|
|
width: int,
|
|
height: int,
|
|
seed: int,
|
|
guidance_scale: float,
|
|
watermark: bool,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
w = h = None
|
|
for label, tw, th in RECOMMENDED_PRESETS:
|
|
if label == size_preset:
|
|
w, h = tw, th
|
|
break
|
|
|
|
if w is None or h is None:
|
|
w, h = width, height
|
|
if not (512 <= w <= 2048) or not (512 <= h <= 2048):
|
|
raise ValueError(
|
|
f"Custom size out of range: {w}x{h}. " "Both width and height must be between 512 and 2048 pixels."
|
|
)
|
|
|
|
payload = Text2ImageTaskCreationRequest(
|
|
model=model,
|
|
prompt=prompt,
|
|
size=f"{w}x{h}",
|
|
seed=seed,
|
|
guidance_scale=guidance_scale,
|
|
watermark=watermark,
|
|
)
|
|
response = await sync_op(
|
|
cls,
|
|
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
|
|
data=payload,
|
|
response_model=ImageTaskCreationResponse,
|
|
)
|
|
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
|
|
|
|
|
|
class ByteDanceImageEditNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceImageEditNode",
|
|
display_name="ByteDance Image Edit",
|
|
category="api node/image/ByteDance",
|
|
description="Edit images using ByteDance models via api based on prompt",
|
|
inputs=[
|
|
IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]),
|
|
IO.Image.Input(
|
|
"image",
|
|
tooltip="The base image to edit",
|
|
),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
default="",
|
|
tooltip="Instruction to edit image",
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation",
|
|
optional=True,
|
|
),
|
|
IO.Float.Input(
|
|
"guidance_scale",
|
|
default=5.5,
|
|
min=1.0,
|
|
max=10.0,
|
|
step=0.01,
|
|
display_mode=IO.NumberDisplay.number,
|
|
tooltip="Higher value makes the image follow the prompt more closely",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the image',
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Image.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
image: Input.Image,
|
|
prompt: str,
|
|
seed: int,
|
|
guidance_scale: float,
|
|
watermark: bool,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
if get_number_of_images(image) != 1:
|
|
raise ValueError("Exactly one input image is required.")
|
|
validate_image_aspect_ratio(image, (1, 3), (3, 1))
|
|
source_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0]
|
|
payload = Image2ImageTaskCreationRequest(
|
|
model=model,
|
|
prompt=prompt,
|
|
image=source_url,
|
|
seed=seed,
|
|
guidance_scale=guidance_scale,
|
|
watermark=watermark,
|
|
)
|
|
response = await sync_op(
|
|
cls,
|
|
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
|
|
data=payload,
|
|
response_model=ImageTaskCreationResponse,
|
|
)
|
|
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
|
|
|
|
|
|
class ByteDanceSeedreamNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceSeedreamNode",
|
|
display_name="ByteDance Seedream 4",
|
|
category="api node/image/ByteDance",
|
|
description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.",
|
|
inputs=[
|
|
IO.Combo.Input(
|
|
"model",
|
|
options=["seedream-4-5-251128", "seedream-4-0-250828"],
|
|
tooltip="Model name",
|
|
),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
default="",
|
|
tooltip="Text prompt for creating or editing an image.",
|
|
),
|
|
IO.Image.Input(
|
|
"image",
|
|
tooltip="Input image(s) for image-to-image generation. "
|
|
"List of 1-10 images for single or multi-reference generation.",
|
|
optional=True,
|
|
),
|
|
IO.Combo.Input(
|
|
"size_preset",
|
|
options=[label for label, _, _ in RECOMMENDED_PRESETS_SEEDREAM_4],
|
|
tooltip="Pick a recommended size. Select Custom to use the width and height below.",
|
|
),
|
|
IO.Int.Input(
|
|
"width",
|
|
default=2048,
|
|
min=1024,
|
|
max=4096,
|
|
step=8,
|
|
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
|
|
optional=True,
|
|
),
|
|
IO.Int.Input(
|
|
"height",
|
|
default=2048,
|
|
min=1024,
|
|
max=4096,
|
|
step=8,
|
|
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
|
|
optional=True,
|
|
),
|
|
IO.Combo.Input(
|
|
"sequential_image_generation",
|
|
options=["disabled", "auto"],
|
|
tooltip="Group image generation mode. "
|
|
"'disabled' generates a single image. "
|
|
"'auto' lets the model decide whether to generate multiple related images "
|
|
"(e.g., story scenes, character variations).",
|
|
optional=True,
|
|
),
|
|
IO.Int.Input(
|
|
"max_images",
|
|
default=1,
|
|
min=1,
|
|
max=15,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
tooltip="Maximum number of images to generate when sequential_image_generation='auto'. "
|
|
"Total images (input + generated) cannot exceed 15.",
|
|
optional=True,
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the image.',
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"fail_on_partial",
|
|
default=True,
|
|
tooltip="If enabled, abort execution if any requested images are missing or return an error.",
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Image.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
image: Input.Image | None = None,
|
|
size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0],
|
|
width: int = 2048,
|
|
height: int = 2048,
|
|
sequential_image_generation: str = "disabled",
|
|
max_images: int = 1,
|
|
seed: int = 0,
|
|
watermark: bool = True,
|
|
fail_on_partial: bool = True,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
w = h = None
|
|
for label, tw, th in RECOMMENDED_PRESETS_SEEDREAM_4:
|
|
if label == size_preset:
|
|
w, h = tw, th
|
|
break
|
|
|
|
if w is None or h is None:
|
|
w, h = width, height
|
|
if not (1024 <= w <= 4096) or not (1024 <= h <= 4096):
|
|
raise ValueError(
|
|
f"Custom size out of range: {w}x{h}. " "Both width and height must be between 1024 and 4096 pixels."
|
|
)
|
|
out_num_pixels = w * h
|
|
mp_provided = out_num_pixels / 1_000_000.0
|
|
if "seedream-4-5" in model and out_num_pixels < 3686400:
|
|
raise ValueError(
|
|
f"Minimum image resolution that Seedream 4.5 can generate is 3.68MP, "
|
|
f"but {mp_provided:.2f}MP provided."
|
|
)
|
|
if "seedream-4-0" in model and out_num_pixels < 921600:
|
|
raise ValueError(
|
|
f"Minimum image resolution that the selected model can generate is 0.92MP, "
|
|
f"but {mp_provided:.2f}MP provided."
|
|
)
|
|
n_input_images = get_number_of_images(image) if image is not None else 0
|
|
if n_input_images > 10:
|
|
raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.")
|
|
if sequential_image_generation == "auto" and n_input_images + max_images > 15:
|
|
raise ValueError(
|
|
"The maximum number of generated images plus the number of reference images cannot exceed 15."
|
|
)
|
|
reference_images_urls = []
|
|
if n_input_images:
|
|
for i in image:
|
|
validate_image_aspect_ratio(i, (1, 3), (3, 1))
|
|
reference_images_urls = await upload_images_to_comfyapi(
|
|
cls,
|
|
image,
|
|
max_images=n_input_images,
|
|
mime_type="image/png",
|
|
)
|
|
response = await sync_op(
|
|
cls,
|
|
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
|
|
response_model=ImageTaskCreationResponse,
|
|
data=Seedream4TaskCreationRequest(
|
|
model=model,
|
|
prompt=prompt,
|
|
image=reference_images_urls,
|
|
size=f"{w}x{h}",
|
|
seed=seed,
|
|
sequential_image_generation=sequential_image_generation,
|
|
sequential_image_generation_options=Seedream4Options(max_images=max_images),
|
|
watermark=watermark,
|
|
),
|
|
)
|
|
if len(response.data) == 1:
|
|
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
|
|
urls = [str(d["url"]) for d in response.data if isinstance(d, dict) and "url" in d]
|
|
if fail_on_partial and len(urls) < len(response.data):
|
|
raise RuntimeError(f"Only {len(urls)} of {len(response.data)} images were generated before error.")
|
|
return IO.NodeOutput(torch.cat([await download_url_to_image_tensor(i) for i in urls]))
|
|
|
|
|
|
class ByteDanceTextToVideoNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceTextToVideoNode",
|
|
display_name="ByteDance Text to Video",
|
|
category="api node/video/ByteDance",
|
|
description="Generate video using ByteDance models via api based on prompt",
|
|
inputs=[
|
|
IO.Combo.Input(
|
|
"model",
|
|
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
|
|
default="seedance-1-0-pro-fast-251015",
|
|
),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
tooltip="The text prompt used to generate the video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"resolution",
|
|
options=["480p", "720p", "1080p"],
|
|
tooltip="The resolution of the output video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"aspect_ratio",
|
|
options=["16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
|
|
tooltip="The aspect ratio of the output video.",
|
|
),
|
|
IO.Int.Input(
|
|
"duration",
|
|
default=5,
|
|
min=3,
|
|
max=12,
|
|
step=1,
|
|
tooltip="The duration of the output video in seconds.",
|
|
display_mode=IO.NumberDisplay.slider,
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"camera_fixed",
|
|
default=False,
|
|
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
|
|
"to fix the camera to your prompt, but does not guarantee the actual effect.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the video.',
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Video.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
resolution: str,
|
|
aspect_ratio: str,
|
|
duration: int,
|
|
seed: int,
|
|
camera_fixed: bool,
|
|
watermark: bool,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
|
|
|
|
prompt = (
|
|
f"{prompt} "
|
|
f"--resolution {resolution} "
|
|
f"--ratio {aspect_ratio} "
|
|
f"--duration {duration} "
|
|
f"--seed {seed} "
|
|
f"--camerafixed {str(camera_fixed).lower()} "
|
|
f"--watermark {str(watermark).lower()}"
|
|
)
|
|
return await process_video_task(
|
|
cls,
|
|
payload=Text2VideoTaskCreationRequest(model=model, content=[TaskTextContent(text=prompt)]),
|
|
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
|
|
)
|
|
|
|
|
|
class ByteDanceImageToVideoNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceImageToVideoNode",
|
|
display_name="ByteDance Image to Video",
|
|
category="api node/video/ByteDance",
|
|
description="Generate video using ByteDance models via api based on image and prompt",
|
|
inputs=[
|
|
IO.Combo.Input(
|
|
"model",
|
|
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
|
|
default="seedance-1-0-pro-fast-251015",
|
|
),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
tooltip="The text prompt used to generate the video.",
|
|
),
|
|
IO.Image.Input(
|
|
"image",
|
|
tooltip="First frame to be used for the video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"resolution",
|
|
options=["480p", "720p", "1080p"],
|
|
tooltip="The resolution of the output video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"aspect_ratio",
|
|
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
|
|
tooltip="The aspect ratio of the output video.",
|
|
),
|
|
IO.Int.Input(
|
|
"duration",
|
|
default=5,
|
|
min=3,
|
|
max=12,
|
|
step=1,
|
|
tooltip="The duration of the output video in seconds.",
|
|
display_mode=IO.NumberDisplay.slider,
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"camera_fixed",
|
|
default=False,
|
|
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
|
|
"to fix the camera to your prompt, but does not guarantee the actual effect.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the video.',
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Video.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
image: Input.Image,
|
|
resolution: str,
|
|
aspect_ratio: str,
|
|
duration: int,
|
|
seed: int,
|
|
camera_fixed: bool,
|
|
watermark: bool,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
|
|
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
|
|
validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
|
|
|
|
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
|
|
prompt = (
|
|
f"{prompt} "
|
|
f"--resolution {resolution} "
|
|
f"--ratio {aspect_ratio} "
|
|
f"--duration {duration} "
|
|
f"--seed {seed} "
|
|
f"--camerafixed {str(camera_fixed).lower()} "
|
|
f"--watermark {str(watermark).lower()}"
|
|
)
|
|
|
|
return await process_video_task(
|
|
cls,
|
|
payload=Image2VideoTaskCreationRequest(
|
|
model=model,
|
|
content=[TaskTextContent(text=prompt), TaskImageContent(image_url=TaskImageContentUrl(url=image_url))],
|
|
),
|
|
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
|
|
)
|
|
|
|
|
|
class ByteDanceFirstLastFrameNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceFirstLastFrameNode",
|
|
display_name="ByteDance First-Last-Frame to Video",
|
|
category="api node/video/ByteDance",
|
|
description="Generate video using prompt and first and last frames.",
|
|
inputs=[
|
|
IO.Combo.Input(
|
|
"model",
|
|
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
|
|
default="seedance-1-0-lite-i2v-250428",
|
|
),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
tooltip="The text prompt used to generate the video.",
|
|
),
|
|
IO.Image.Input(
|
|
"first_frame",
|
|
tooltip="First frame to be used for the video.",
|
|
),
|
|
IO.Image.Input(
|
|
"last_frame",
|
|
tooltip="Last frame to be used for the video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"resolution",
|
|
options=["480p", "720p", "1080p"],
|
|
tooltip="The resolution of the output video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"aspect_ratio",
|
|
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
|
|
tooltip="The aspect ratio of the output video.",
|
|
),
|
|
IO.Int.Input(
|
|
"duration",
|
|
default=5,
|
|
min=3,
|
|
max=12,
|
|
step=1,
|
|
tooltip="The duration of the output video in seconds.",
|
|
display_mode=IO.NumberDisplay.slider,
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"camera_fixed",
|
|
default=False,
|
|
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
|
|
"to fix the camera to your prompt, but does not guarantee the actual effect.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the video.',
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Video.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
first_frame: Input.Image,
|
|
last_frame: Input.Image,
|
|
resolution: str,
|
|
aspect_ratio: str,
|
|
duration: int,
|
|
seed: int,
|
|
camera_fixed: bool,
|
|
watermark: bool,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
|
|
for i in (first_frame, last_frame):
|
|
validate_image_dimensions(i, min_width=300, min_height=300, max_width=6000, max_height=6000)
|
|
validate_image_aspect_ratio(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
|
|
|
|
download_urls = await upload_images_to_comfyapi(
|
|
cls,
|
|
image_tensor_pair_to_batch(first_frame, last_frame),
|
|
max_images=2,
|
|
mime_type="image/png",
|
|
)
|
|
|
|
prompt = (
|
|
f"{prompt} "
|
|
f"--resolution {resolution} "
|
|
f"--ratio {aspect_ratio} "
|
|
f"--duration {duration} "
|
|
f"--seed {seed} "
|
|
f"--camerafixed {str(camera_fixed).lower()} "
|
|
f"--watermark {str(watermark).lower()}"
|
|
)
|
|
|
|
return await process_video_task(
|
|
cls,
|
|
payload=Image2VideoTaskCreationRequest(
|
|
model=model,
|
|
content=[
|
|
TaskTextContent(text=prompt),
|
|
TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[0])), role="first_frame"),
|
|
TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[1])), role="last_frame"),
|
|
],
|
|
),
|
|
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
|
|
)
|
|
|
|
|
|
class ByteDanceImageReferenceNode(IO.ComfyNode):
|
|
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return IO.Schema(
|
|
node_id="ByteDanceImageReferenceNode",
|
|
display_name="ByteDance Reference Images to Video",
|
|
category="api node/video/ByteDance",
|
|
description="Generate video using prompt and reference images.",
|
|
inputs=[
|
|
IO.Combo.Input(
|
|
"model",
|
|
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
|
|
default="seedance-1-0-lite-i2v-250428",
|
|
),
|
|
IO.String.Input(
|
|
"prompt",
|
|
multiline=True,
|
|
tooltip="The text prompt used to generate the video.",
|
|
),
|
|
IO.Image.Input(
|
|
"images",
|
|
tooltip="One to four images.",
|
|
),
|
|
IO.Combo.Input(
|
|
"resolution",
|
|
options=["480p", "720p"],
|
|
tooltip="The resolution of the output video.",
|
|
),
|
|
IO.Combo.Input(
|
|
"aspect_ratio",
|
|
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
|
|
tooltip="The aspect ratio of the output video.",
|
|
),
|
|
IO.Int.Input(
|
|
"duration",
|
|
default=5,
|
|
min=3,
|
|
max=12,
|
|
step=1,
|
|
tooltip="The duration of the output video in seconds.",
|
|
display_mode=IO.NumberDisplay.slider,
|
|
),
|
|
IO.Int.Input(
|
|
"seed",
|
|
default=0,
|
|
min=0,
|
|
max=2147483647,
|
|
step=1,
|
|
display_mode=IO.NumberDisplay.number,
|
|
control_after_generate=True,
|
|
tooltip="Seed to use for generation.",
|
|
optional=True,
|
|
),
|
|
IO.Boolean.Input(
|
|
"watermark",
|
|
default=True,
|
|
tooltip='Whether to add an "AI generated" watermark to the video.',
|
|
optional=True,
|
|
),
|
|
],
|
|
outputs=[
|
|
IO.Video.Output(),
|
|
],
|
|
hidden=[
|
|
IO.Hidden.auth_token_comfy_org,
|
|
IO.Hidden.api_key_comfy_org,
|
|
IO.Hidden.unique_id,
|
|
],
|
|
is_api_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
async def execute(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
images: Input.Image,
|
|
resolution: str,
|
|
aspect_ratio: str,
|
|
duration: int,
|
|
seed: int,
|
|
watermark: bool,
|
|
) -> IO.NodeOutput:
|
|
validate_string(prompt, strip_whitespace=True, min_length=1)
|
|
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "watermark"])
|
|
for image in images:
|
|
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
|
|
validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
|
|
|
|
image_urls = await upload_images_to_comfyapi(cls, images, max_images=4, mime_type="image/png")
|
|
prompt = (
|
|
f"{prompt} "
|
|
f"--resolution {resolution} "
|
|
f"--ratio {aspect_ratio} "
|
|
f"--duration {duration} "
|
|
f"--seed {seed} "
|
|
f"--watermark {str(watermark).lower()}"
|
|
)
|
|
x = [
|
|
TaskTextContent(text=prompt),
|
|
*[TaskImageContent(image_url=TaskImageContentUrl(url=str(i)), role="reference_image") for i in image_urls],
|
|
]
|
|
return await process_video_task(
|
|
cls,
|
|
payload=Image2VideoTaskCreationRequest(model=model, content=x),
|
|
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
|
|
)
|
|
|
|
|
|
async def process_video_task(
|
|
cls: type[IO.ComfyNode],
|
|
payload: Text2VideoTaskCreationRequest | Image2VideoTaskCreationRequest,
|
|
estimated_duration: int | None,
|
|
) -> IO.NodeOutput:
|
|
initial_response = await sync_op(
|
|
cls,
|
|
ApiEndpoint(path=BYTEPLUS_TASK_ENDPOINT, method="POST"),
|
|
data=payload,
|
|
response_model=TaskCreationResponse,
|
|
)
|
|
response = await poll_op(
|
|
cls,
|
|
ApiEndpoint(path=f"{BYTEPLUS_TASK_STATUS_ENDPOINT}/{initial_response.id}"),
|
|
status_extractor=lambda r: r.status,
|
|
estimated_duration=estimated_duration,
|
|
response_model=TaskStatusResponse,
|
|
)
|
|
return IO.NodeOutput(await download_url_to_video_output(response.content.video_url))
|
|
|
|
|
|
def raise_if_text_params(prompt: str, text_params: list[str]) -> None:
|
|
for i in text_params:
|
|
if f"--{i} " in prompt:
|
|
raise ValueError(
|
|
f"--{i} is not allowed in the prompt, use the appropriated widget input to change this value."
|
|
)
|
|
|
|
|
|
class ByteDanceExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
|
return [
|
|
ByteDanceImageNode,
|
|
ByteDanceImageEditNode,
|
|
ByteDanceSeedreamNode,
|
|
ByteDanceTextToVideoNode,
|
|
ByteDanceImageToVideoNode,
|
|
ByteDanceFirstLastFrameNode,
|
|
ByteDanceImageReferenceNode,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> ByteDanceExtension:
|
|
return ByteDanceExtension()
|