ComfyUI/comfy_api_nodes/nodes_bytedance.py
Alexander Piskun fd271dedfd
[API Nodes] add support for seedance-1-0-pro-fast model (#10947)
* feat(api-nodes): add support for seedance-1-0-pro-fast model

* feat(api-nodes): add support for seedream-4.5 model
2025-12-08 01:33:46 -08:00

964 lines
35 KiB
Python

import logging
import math
import torch
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.bytedance_api import (
RECOMMENDED_PRESETS,
RECOMMENDED_PRESETS_SEEDREAM_4,
VIDEO_TASKS_EXECUTION_TIME,
Image2ImageTaskCreationRequest,
Image2VideoTaskCreationRequest,
ImageTaskCreationResponse,
Seedream4Options,
Seedream4TaskCreationRequest,
TaskCreationResponse,
TaskImageContent,
TaskImageContentUrl,
TaskStatusResponse,
TaskTextContent,
Text2ImageTaskCreationRequest,
Text2VideoTaskCreationRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
download_url_to_video_output,
get_number_of_images,
image_tensor_pair_to_batch,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_image_aspect_ratio,
validate_image_dimensions,
validate_string,
)
BYTEPLUS_IMAGE_ENDPOINT = "/proxy/byteplus/api/v3/images/generations"
# Long-running tasks endpoints(e.g., video)
BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks"
BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id}
def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
if response.error:
error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}"
logging.info(error_msg)
raise RuntimeError(error_msg)
logging.info("ByteDance task succeeded, image URL: %s", response.data[0]["url"])
return response.data[0]["url"]
class ByteDanceImageNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceImageNode",
display_name="ByteDance Image",
category="api node/image/ByteDance",
description="Generate images using ByteDance models via api based on prompt",
inputs=[
IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the image",
),
IO.Combo.Input(
"size_preset",
options=[label for label, _, _ in RECOMMENDED_PRESETS],
tooltip="Pick a recommended size. Select Custom to use the width and height below",
),
IO.Int.Input(
"width",
default=1024,
min=512,
max=2048,
step=64,
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
),
IO.Int.Input(
"height",
default=1024,
min=512,
max=2048,
step=64,
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation",
optional=True,
),
IO.Float.Input(
"guidance_scale",
default=2.5,
min=1.0,
max=10.0,
step=0.01,
display_mode=IO.NumberDisplay.number,
tooltip="Higher value makes the image follow the prompt more closely",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the image',
optional=True,
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
size_preset: str,
width: int,
height: int,
seed: int,
guidance_scale: float,
watermark: bool,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
w = h = None
for label, tw, th in RECOMMENDED_PRESETS:
if label == size_preset:
w, h = tw, th
break
if w is None or h is None:
w, h = width, height
if not (512 <= w <= 2048) or not (512 <= h <= 2048):
raise ValueError(
f"Custom size out of range: {w}x{h}. " "Both width and height must be between 512 and 2048 pixels."
)
payload = Text2ImageTaskCreationRequest(
model=model,
prompt=prompt,
size=f"{w}x{h}",
seed=seed,
guidance_scale=guidance_scale,
watermark=watermark,
)
response = await sync_op(
cls,
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
data=payload,
response_model=ImageTaskCreationResponse,
)
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
class ByteDanceImageEditNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceImageEditNode",
display_name="ByteDance Image Edit",
category="api node/image/ByteDance",
description="Edit images using ByteDance models via api based on prompt",
inputs=[
IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]),
IO.Image.Input(
"image",
tooltip="The base image to edit",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Instruction to edit image",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation",
optional=True,
),
IO.Float.Input(
"guidance_scale",
default=5.5,
min=1.0,
max=10.0,
step=0.01,
display_mode=IO.NumberDisplay.number,
tooltip="Higher value makes the image follow the prompt more closely",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the image',
optional=True,
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
prompt: str,
seed: int,
guidance_scale: float,
watermark: bool,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
validate_image_aspect_ratio(image, (1, 3), (3, 1))
source_url = (await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png"))[0]
payload = Image2ImageTaskCreationRequest(
model=model,
prompt=prompt,
image=source_url,
seed=seed,
guidance_scale=guidance_scale,
watermark=watermark,
)
response = await sync_op(
cls,
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
data=payload,
response_model=ImageTaskCreationResponse,
)
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
class ByteDanceSeedreamNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceSeedreamNode",
display_name="ByteDance Seedream 4",
category="api node/image/ByteDance",
description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.",
inputs=[
IO.Combo.Input(
"model",
options=["seedream-4-5-251128", "seedream-4-0-250828"],
tooltip="Model name",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text prompt for creating or editing an image.",
),
IO.Image.Input(
"image",
tooltip="Input image(s) for image-to-image generation. "
"List of 1-10 images for single or multi-reference generation.",
optional=True,
),
IO.Combo.Input(
"size_preset",
options=[label for label, _, _ in RECOMMENDED_PRESETS_SEEDREAM_4],
tooltip="Pick a recommended size. Select Custom to use the width and height below.",
),
IO.Int.Input(
"width",
default=2048,
min=1024,
max=4096,
step=8,
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
optional=True,
),
IO.Int.Input(
"height",
default=2048,
min=1024,
max=4096,
step=8,
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
optional=True,
),
IO.Combo.Input(
"sequential_image_generation",
options=["disabled", "auto"],
tooltip="Group image generation mode. "
"'disabled' generates a single image. "
"'auto' lets the model decide whether to generate multiple related images "
"(e.g., story scenes, character variations).",
optional=True,
),
IO.Int.Input(
"max_images",
default=1,
min=1,
max=15,
step=1,
display_mode=IO.NumberDisplay.number,
tooltip="Maximum number of images to generate when sequential_image_generation='auto'. "
"Total images (input + generated) cannot exceed 15.",
optional=True,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the image.',
optional=True,
),
IO.Boolean.Input(
"fail_on_partial",
default=True,
tooltip="If enabled, abort execution if any requested images are missing or return an error.",
optional=True,
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
image: Input.Image | None = None,
size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0],
width: int = 2048,
height: int = 2048,
sequential_image_generation: str = "disabled",
max_images: int = 1,
seed: int = 0,
watermark: bool = True,
fail_on_partial: bool = True,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
w = h = None
for label, tw, th in RECOMMENDED_PRESETS_SEEDREAM_4:
if label == size_preset:
w, h = tw, th
break
if w is None or h is None:
w, h = width, height
if not (1024 <= w <= 4096) or not (1024 <= h <= 4096):
raise ValueError(
f"Custom size out of range: {w}x{h}. " "Both width and height must be between 1024 and 4096 pixels."
)
out_num_pixels = w * h
mp_provided = out_num_pixels / 1_000_000.0
if "seedream-4-5" in model and out_num_pixels < 3686400:
raise ValueError(
f"Minimum image resolution that Seedream 4.5 can generate is 3.68MP, "
f"but {mp_provided:.2f}MP provided."
)
if "seedream-4-0" in model and out_num_pixels < 921600:
raise ValueError(
f"Minimum image resolution that the selected model can generate is 0.92MP, "
f"but {mp_provided:.2f}MP provided."
)
n_input_images = get_number_of_images(image) if image is not None else 0
if n_input_images > 10:
raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.")
if sequential_image_generation == "auto" and n_input_images + max_images > 15:
raise ValueError(
"The maximum number of generated images plus the number of reference images cannot exceed 15."
)
reference_images_urls = []
if n_input_images:
for i in image:
validate_image_aspect_ratio(i, (1, 3), (3, 1))
reference_images_urls = await upload_images_to_comfyapi(
cls,
image,
max_images=n_input_images,
mime_type="image/png",
)
response = await sync_op(
cls,
ApiEndpoint(path=BYTEPLUS_IMAGE_ENDPOINT, method="POST"),
response_model=ImageTaskCreationResponse,
data=Seedream4TaskCreationRequest(
model=model,
prompt=prompt,
image=reference_images_urls,
size=f"{w}x{h}",
seed=seed,
sequential_image_generation=sequential_image_generation,
sequential_image_generation_options=Seedream4Options(max_images=max_images),
watermark=watermark,
),
)
if len(response.data) == 1:
return IO.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
urls = [str(d["url"]) for d in response.data if isinstance(d, dict) and "url" in d]
if fail_on_partial and len(urls) < len(response.data):
raise RuntimeError(f"Only {len(urls)} of {len(response.data)} images were generated before error.")
return IO.NodeOutput(torch.cat([await download_url_to_image_tensor(i) for i in urls]))
class ByteDanceTextToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceTextToVideoNode",
display_name="ByteDance Text to Video",
category="api node/video/ByteDance",
description="Generate video using ByteDance models via api based on prompt",
inputs=[
IO.Combo.Input(
"model",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
default="seedance-1-0-pro-fast-251015",
),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
IO.Combo.Input(
"resolution",
options=["480p", "720p", "1080p"],
tooltip="The resolution of the output video.",
),
IO.Combo.Input(
"aspect_ratio",
options=["16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
IO.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
IO.Boolean.Input(
"camera_fixed",
default=False,
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
"to fix the camera to your prompt, but does not guarantee the actual effect.",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the video.',
optional=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
camera_fixed: bool,
watermark: bool,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--camerafixed {str(camera_fixed).lower()} "
f"--watermark {str(watermark).lower()}"
)
return await process_video_task(
cls,
payload=Text2VideoTaskCreationRequest(model=model, content=[TaskTextContent(text=prompt)]),
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
class ByteDanceImageToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceImageToVideoNode",
display_name="ByteDance Image to Video",
category="api node/video/ByteDance",
description="Generate video using ByteDance models via api based on image and prompt",
inputs=[
IO.Combo.Input(
"model",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
default="seedance-1-0-pro-fast-251015",
),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
IO.Image.Input(
"image",
tooltip="First frame to be used for the video.",
),
IO.Combo.Input(
"resolution",
options=["480p", "720p", "1080p"],
tooltip="The resolution of the output video.",
),
IO.Combo.Input(
"aspect_ratio",
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
IO.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
IO.Boolean.Input(
"camera_fixed",
default=False,
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
"to fix the camera to your prompt, but does not guarantee the actual effect.",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the video.',
optional=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
image: Input.Image,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
camera_fixed: bool,
watermark: bool,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--camerafixed {str(camera_fixed).lower()} "
f"--watermark {str(watermark).lower()}"
)
return await process_video_task(
cls,
payload=Image2VideoTaskCreationRequest(
model=model,
content=[TaskTextContent(text=prompt), TaskImageContent(image_url=TaskImageContentUrl(url=image_url))],
),
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
class ByteDanceFirstLastFrameNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceFirstLastFrameNode",
display_name="ByteDance First-Last-Frame to Video",
category="api node/video/ByteDance",
description="Generate video using prompt and first and last frames.",
inputs=[
IO.Combo.Input(
"model",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
default="seedance-1-0-lite-i2v-250428",
),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
IO.Image.Input(
"first_frame",
tooltip="First frame to be used for the video.",
),
IO.Image.Input(
"last_frame",
tooltip="Last frame to be used for the video.",
),
IO.Combo.Input(
"resolution",
options=["480p", "720p", "1080p"],
tooltip="The resolution of the output video.",
),
IO.Combo.Input(
"aspect_ratio",
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
IO.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
IO.Boolean.Input(
"camera_fixed",
default=False,
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
"to fix the camera to your prompt, but does not guarantee the actual effect.",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the video.',
optional=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
first_frame: Input.Image,
last_frame: Input.Image,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
camera_fixed: bool,
watermark: bool,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
for i in (first_frame, last_frame):
validate_image_dimensions(i, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
download_urls = await upload_images_to_comfyapi(
cls,
image_tensor_pair_to_batch(first_frame, last_frame),
max_images=2,
mime_type="image/png",
)
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--camerafixed {str(camera_fixed).lower()} "
f"--watermark {str(watermark).lower()}"
)
return await process_video_task(
cls,
payload=Image2VideoTaskCreationRequest(
model=model,
content=[
TaskTextContent(text=prompt),
TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[0])), role="first_frame"),
TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[1])), role="last_frame"),
],
),
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
class ByteDanceImageReferenceNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ByteDanceImageReferenceNode",
display_name="ByteDance Reference Images to Video",
category="api node/video/ByteDance",
description="Generate video using prompt and reference images.",
inputs=[
IO.Combo.Input(
"model",
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
default="seedance-1-0-lite-i2v-250428",
),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
IO.Image.Input(
"images",
tooltip="One to four images.",
),
IO.Combo.Input(
"resolution",
options=["480p", "720p"],
tooltip="The resolution of the output video.",
),
IO.Combo.Input(
"aspect_ratio",
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
IO.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
IO.Boolean.Input(
"watermark",
default=True,
tooltip='Whether to add an "AI generated" watermark to the video.',
optional=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
images: Input.Image,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
watermark: bool,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "watermark"])
for image in images:
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
image_urls = await upload_images_to_comfyapi(cls, images, max_images=4, mime_type="image/png")
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--watermark {str(watermark).lower()}"
)
x = [
TaskTextContent(text=prompt),
*[TaskImageContent(image_url=TaskImageContentUrl(url=str(i)), role="reference_image") for i in image_urls],
]
return await process_video_task(
cls,
payload=Image2VideoTaskCreationRequest(model=model, content=x),
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
async def process_video_task(
cls: type[IO.ComfyNode],
payload: Text2VideoTaskCreationRequest | Image2VideoTaskCreationRequest,
estimated_duration: int | None,
) -> IO.NodeOutput:
initial_response = await sync_op(
cls,
ApiEndpoint(path=BYTEPLUS_TASK_ENDPOINT, method="POST"),
data=payload,
response_model=TaskCreationResponse,
)
response = await poll_op(
cls,
ApiEndpoint(path=f"{BYTEPLUS_TASK_STATUS_ENDPOINT}/{initial_response.id}"),
status_extractor=lambda r: r.status,
estimated_duration=estimated_duration,
response_model=TaskStatusResponse,
)
return IO.NodeOutput(await download_url_to_video_output(response.content.video_url))
def raise_if_text_params(prompt: str, text_params: list[str]) -> None:
for i in text_params:
if f"--{i} " in prompt:
raise ValueError(
f"--{i} is not allowed in the prompt, use the appropriated widget input to change this value."
)
class ByteDanceExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
ByteDanceImageNode,
ByteDanceImageEditNode,
ByteDanceSeedreamNode,
ByteDanceTextToVideoNode,
ByteDanceImageToVideoNode,
ByteDanceFirstLastFrameNode,
ByteDanceImageReferenceNode,
]
async def comfy_entrypoint() -> ByteDanceExtension:
return ByteDanceExtension()