ComfyUI/comfy_api_nodes/util/conversions.py

454 lines
16 KiB
Python

import base64
import logging
import math
import uuid
from io import BytesIO
from typing import Optional
import av
import numpy as np
import torch
from PIL import Image
from comfy.utils import common_upscale
from comfy_api.latest import Input, InputImpl
from comfy_api.util import VideoContainer, VideoCodec
from ._helpers import mimetype_to_extension
def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor:
"""Converts image data from BytesIO to a torch.Tensor.
Args:
image_bytesio: BytesIO object containing the image data.
mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA").
Returns:
A torch.Tensor representing the image (1, H, W, C).
Raises:
PIL.UnidentifiedImageError: If the image data cannot be identified.
ValueError: If the specified mode is invalid.
"""
image = Image.open(image_bytesio)
image = image.convert(mode)
image_array = np.array(image).astype(np.float32) / 255.0
return torch.from_numpy(image_array).unsqueeze(0)
def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> torch.Tensor:
"""
Converts a pair of image tensors to a batch tensor.
If the images are not the same size, the smaller image is resized to
match the larger image.
"""
if image1.shape[1:] != image2.shape[1:]:
image2 = common_upscale(
image2.movedim(-1, 1),
image1.shape[2],
image1.shape[1],
"bilinear",
"center",
).movedim(1, -1)
return torch.cat((image1, image2), dim=0)
def tensor_to_bytesio(
image: torch.Tensor,
name: Optional[str] = None,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> BytesIO:
"""Converts a torch.Tensor image to a named BytesIO object.
Args:
image: Input torch.Tensor image.
name: Optional filename for the BytesIO object.
total_pixels: Maximum total pixels for potential downscaling.
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
Returns:
Named BytesIO object containing the image data, with pointer set to the start of buffer.
"""
if not mime_type:
mime_type = "image/png"
pil_image = tensor_to_pil(image, total_pixels=total_pixels)
img_binary = pil_to_bytesio(pil_image, mime_type=mime_type)
img_binary.name = f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
return img_binary
def tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image:
"""Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling."""
if len(image.shape) > 3:
image = image[0]
# TODO: remove alpha if not allowed and present
input_tensor = image.cpu()
input_tensor = downscale_image_tensor(input_tensor.unsqueeze(0), total_pixels=total_pixels).squeeze()
image_np = (input_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(image_np)
return img
def tensor_to_base64_string(
image_tensor: torch.Tensor,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> str:
"""Convert [B, H, W, C] or [H, W, C] tensor to a base64 string.
Args:
image_tensor: Input torch.Tensor image.
total_pixels: Maximum total pixels for potential downscaling.
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
Returns:
Base64 encoded string of the image.
"""
pil_image = tensor_to_pil(image_tensor, total_pixels=total_pixels)
img_byte_arr = pil_to_bytesio(pil_image, mime_type=mime_type)
img_bytes = img_byte_arr.getvalue()
# Encode bytes to base64 string
base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8")
return base64_encoded_string
def pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO:
"""Converts a PIL Image to a BytesIO object."""
if not mime_type:
mime_type = "image/png"
img_byte_arr = BytesIO()
# Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG')
pil_format = mime_type.split("/")[-1].upper()
if pil_format == "JPG":
pil_format = "JPEG"
img.save(img_byte_arr, format=pil_format)
img_byte_arr.seek(0)
return img_byte_arr
def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor:
"""Downscale input image tensor to roughly the specified total pixels."""
samples = image.movedim(-1, 1)
total = int(total_pixels)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
if scale_by >= 1:
return image
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = common_upscale(samples, width, height, "lanczos", "disabled")
s = s.movedim(1, -1)
return s
def tensor_to_data_uri(
image_tensor: torch.Tensor,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> str:
"""Converts a tensor image to a Data URI string.
Args:
image_tensor: Input torch.Tensor image.
total_pixels: Maximum total pixels for potential downscaling.
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp').
Returns:
Data URI string (e.g., 'data:image/png;base64,...').
"""
base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type)
return f"data:{mime_type};base64,{base64_string}"
def audio_to_base64_string(audio: Input.Audio, container_format: str = "mp4", codec_name: str = "aac") -> str:
"""Converts an audio input to a base64 string."""
sample_rate: int = audio["sample_rate"]
waveform: torch.Tensor = audio["waveform"]
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, container_format, codec_name)
audio_bytes = audio_bytes_io.getvalue()
return base64.b64encode(audio_bytes).decode("utf-8")
def video_to_base64_string(
video: Input.Video,
container_format: VideoContainer = None,
codec: VideoCodec = None
) -> str:
"""
Converts a video input to a base64 string.
Args:
video: The video input to convert
container_format: Optional container format to use (defaults to video.container if available)
codec: Optional codec to use (defaults to video.codec if available)
"""
video_bytes_io = BytesIO()
# Use provided format/codec if specified, otherwise use video's own if available
format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4)
codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264)
video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use)
video_bytes_io.seek(0)
return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8")
def audio_ndarray_to_bytesio(
audio_data_np: np.ndarray,
sample_rate: int,
container_format: str = "mp4",
codec_name: str = "aac",
) -> BytesIO:
"""
Encodes a numpy array of audio data into a BytesIO object.
"""
audio_bytes_io = BytesIO()
with av.open(audio_bytes_io, mode="w", format=container_format) as output_container:
audio_stream = output_container.add_stream(codec_name, rate=sample_rate)
frame = av.AudioFrame.from_ndarray(
audio_data_np,
format="fltp",
layout="stereo" if audio_data_np.shape[0] > 1 else "mono",
)
frame.sample_rate = sample_rate
frame.pts = 0
for packet in audio_stream.encode(frame):
output_container.mux(packet)
# Flush stream
for packet in audio_stream.encode(None):
output_container.mux(packet)
audio_bytes_io.seek(0)
return audio_bytes_io
def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray:
"""
Prepares audio waveform for av library by converting to a contiguous numpy array.
Args:
waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type.
Returns:
Contiguous numpy array of the audio waveform. If the audio was batched,
the first item is taken.
"""
if waveform.ndim != 3 or waveform.shape[0] != 1:
raise ValueError("Expected waveform tensor shape (1, channels, samples)")
# If batch is > 1, take first item
if waveform.shape[0] > 1:
waveform = waveform[0]
# Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array
audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy()
if audio_data_np.dtype != np.float32:
audio_data_np = audio_data_np.astype(np.float32)
return audio_data_np
def audio_input_to_mp3(audio: Input.Audio) -> BytesIO:
waveform = audio["waveform"].cpu()
output_buffer = BytesIO()
output_container = av.open(output_buffer, mode="w", format="mp3")
out_stream = output_container.add_stream("libmp3lame", rate=audio["sample_rate"])
out_stream.bit_rate = 320000
frame = av.AudioFrame.from_ndarray(
waveform.movedim(0, 1).reshape(1, -1).float().numpy(),
format="flt",
layout="mono" if waveform.shape[0] == 1 else "stereo",
)
frame.sample_rate = audio["sample_rate"]
frame.pts = 0
output_container.mux(out_stream.encode(frame))
output_container.mux(out_stream.encode(None))
output_container.close()
output_buffer.seek(0)
return output_buffer
def trim_video(video: Input.Video, duration_sec: float) -> Input.Video:
"""
Returns a new VideoInput object trimmed from the beginning to the specified duration,
using av to avoid loading entire video into memory.
Args:
video: Input video to trim
duration_sec: Duration in seconds to keep from the beginning
Returns:
VideoFromFile object that owns the output buffer
"""
output_buffer = BytesIO()
input_container = None
output_container = None
try:
# Get the stream source - this avoids loading entire video into memory
# when the source is already a file path
input_source = video.get_stream_source()
# Open containers
input_container = av.open(input_source, mode="r")
output_container = av.open(output_buffer, mode="w", format="mp4")
# Set up output streams for re-encoding
video_stream = None
audio_stream = None
for stream in input_container.streams:
logging.info("Found stream: type=%s, class=%s", stream.type, type(stream))
if isinstance(stream, av.VideoStream):
# Create output video stream with same parameters
video_stream = output_container.add_stream("h264", rate=stream.average_rate)
video_stream.width = stream.width
video_stream.height = stream.height
video_stream.pix_fmt = "yuv420p"
logging.info("Added video stream: %sx%s @ %sfps", stream.width, stream.height, stream.average_rate)
elif isinstance(stream, av.AudioStream):
# Create output audio stream with same parameters
audio_stream = output_container.add_stream("aac", rate=stream.sample_rate)
audio_stream.sample_rate = stream.sample_rate
audio_stream.layout = stream.layout
logging.info("Added audio stream: %sHz, %s channels", stream.sample_rate, stream.channels)
# Calculate target frame count that's divisible by 16
fps = input_container.streams.video[0].average_rate
estimated_frames = int(duration_sec * fps)
target_frames = (estimated_frames // 16) * 16 # Round down to nearest multiple of 16
if target_frames == 0:
raise ValueError("Video too short: need at least 16 frames for Moonvalley")
frame_count = 0
audio_frame_count = 0
# Decode and re-encode video frames
if video_stream:
for frame in input_container.decode(video=0):
if frame_count >= target_frames:
break
# Re-encode frame
for packet in video_stream.encode(frame):
output_container.mux(packet)
frame_count += 1
# Flush encoder
for packet in video_stream.encode():
output_container.mux(packet)
logging.info("Encoded %s video frames (target: %s)", frame_count, target_frames)
# Decode and re-encode audio frames
if audio_stream:
input_container.seek(0) # Reset to beginning for audio
for frame in input_container.decode(audio=0):
if frame.time >= duration_sec:
break
# Re-encode frame
for packet in audio_stream.encode(frame):
output_container.mux(packet)
audio_frame_count += 1
# Flush encoder
for packet in audio_stream.encode():
output_container.mux(packet)
logging.info("Encoded %s audio frames", audio_frame_count)
# Close containers
output_container.close()
input_container.close()
# Return as VideoFromFile using the buffer
output_buffer.seek(0)
return InputImpl.VideoFromFile(output_buffer)
except Exception as e:
# Clean up on error
if input_container is not None:
input_container.close()
if output_container is not None:
output_container.close()
raise RuntimeError(f"Failed to trim video: {str(e)}") from e
def _f32_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to float 32 bits PCM format. Copy-paste from nodes_audio.py file."""
if wav.dtype.is_floating_point:
return wav
elif wav.dtype == torch.int16:
return wav.float() / (2**15)
elif wav.dtype == torch.int32:
return wav.float() / (2**31)
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
def audio_bytes_to_audio_input(audio_bytes: bytes) -> dict:
"""
Decode any common audio container from bytes using PyAV and return
a Comfy AUDIO dict: {"waveform": [1, C, T] float32, "sample_rate": int}.
"""
with av.open(BytesIO(audio_bytes)) as af:
if not af.streams.audio:
raise ValueError("No audio stream found in response.")
stream = af.streams.audio[0]
in_sr = int(stream.codec_context.sample_rate)
out_sr = in_sr
frames: list[torch.Tensor] = []
n_channels = stream.channels or 1
for frame in af.decode(streams=stream.index):
arr = frame.to_ndarray() # shape can be [C, T] or [T, C] or [T]
buf = torch.from_numpy(arr)
if buf.ndim == 1:
buf = buf.unsqueeze(0) # [T] -> [1, T]
elif buf.shape[0] != n_channels and buf.shape[-1] == n_channels:
buf = buf.transpose(0, 1).contiguous() # [T, C] -> [C, T]
elif buf.shape[0] != n_channels:
buf = buf.reshape(-1, n_channels).t().contiguous() # fallback to [C, T]
frames.append(buf)
if not frames:
raise ValueError("Decoded zero audio frames.")
wav = torch.cat(frames, dim=1) # [C, T]
wav = _f32_pcm(wav)
return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr}
def resize_mask_to_image(
mask: torch.Tensor,
image: torch.Tensor,
upscale_method="nearest-exact",
crop="disabled",
allow_gradient=True,
add_channel_dim=False,
):
"""Resize mask to be the same dimensions as an image, while maintaining proper format for API calls."""
_, height, width, _ = image.shape
mask = mask.unsqueeze(-1)
mask = mask.movedim(-1, 1)
mask = common_upscale(mask, width=width, height=height, upscale_method=upscale_method, crop=crop)
mask = mask.movedim(1, -1)
if not add_channel_dim:
mask = mask.squeeze(-1)
if not allow_gradient:
mask = (mask > 0.5).float()
return mask