mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-08 21:44:33 +08:00
* execution: Roll the UI cache into the outputs Currently the UI cache is parallel to the output cache with expectations of being a content superset of the output cache. At the same time the UI and output cache are maintained completely seperately, making it awkward to free the output cache content without changing the behaviour of the UI cache. There are two actual users (getters) of the UI cache. The first is the case of a direct content hit on the output cache when executing a node. This case is very naturally handled by merging the UI and outputs cache. The second case is the history JSON generation at the end of the prompt. This currently works by asking the cache for all_node_ids and then pulling the cache contents for those nodes. all_node_ids is the nodes of the dynamic prompt. So fold the UI cache into the output cache. The current UI cache setter now writes to a prompt-scope dict. When the output cache is set, just get this value from the dict and tuple up with the outputs. When generating the history, simply iterate prompt-scope dict. This prepares support for more complex caching strategies (like RAM pressure caching) where less than 1 workflow will be cached and it will be desirable to keep the UI cache and output cache in sync. * sd: Implement RAM getter for VAE * model_patcher: Implement RAM getter for ModelPatcher * sd: Implement RAM getter for CLIP * Implement RAM Pressure cache Implement a cache sensitive to RAM pressure. When RAM headroom drops down below a certain threshold, evict RAM-expensive nodes from the cache. Models and tensors are measured directly for RAM usage. An OOM score is then computed based on the RAM usage of the node. Note the due to indirection through shared objects (like a model patcher), multiple nodes can account the same RAM as their individual usage. The intent is this will free chains of nodes particularly model loaders and associate loras as they all score similar and are sorted in close to each other. Has a bias towards unloading model nodes mid flow while being able to keep results like text encodings and VAE. * execution: Convert the cache entry to NamedTuple As commented in review. Convert this to a named tuple and abstract away the tuple type completely from graph.py.
1233 lines
50 KiB
Python
1233 lines
50 KiB
Python
import copy
|
|
import heapq
|
|
import inspect
|
|
import logging
|
|
import sys
|
|
import threading
|
|
import time
|
|
import traceback
|
|
from enum import Enum
|
|
from typing import List, Literal, NamedTuple, Optional, Union
|
|
import asyncio
|
|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
import nodes
|
|
from comfy_execution.caching import (
|
|
BasicCache,
|
|
CacheKeySetID,
|
|
CacheKeySetInputSignature,
|
|
NullCache,
|
|
HierarchicalCache,
|
|
LRUCache,
|
|
RAMPressureCache,
|
|
)
|
|
from comfy_execution.graph import (
|
|
DynamicPrompt,
|
|
ExecutionBlocker,
|
|
ExecutionList,
|
|
get_input_info,
|
|
)
|
|
from comfy_execution.graph_utils import GraphBuilder, is_link
|
|
from comfy_execution.validation import validate_node_input
|
|
from comfy_execution.progress import get_progress_state, reset_progress_state, add_progress_handler, WebUIProgressHandler
|
|
from comfy_execution.utils import CurrentNodeContext
|
|
from comfy_api.internal import _ComfyNodeInternal, _NodeOutputInternal, first_real_override, is_class, make_locked_method_func
|
|
from comfy_api.latest import io
|
|
|
|
|
|
class ExecutionResult(Enum):
|
|
SUCCESS = 0
|
|
FAILURE = 1
|
|
PENDING = 2
|
|
|
|
class DuplicateNodeError(Exception):
|
|
pass
|
|
|
|
class IsChangedCache:
|
|
def __init__(self, prompt_id: str, dynprompt: DynamicPrompt, outputs_cache: BasicCache):
|
|
self.prompt_id = prompt_id
|
|
self.dynprompt = dynprompt
|
|
self.outputs_cache = outputs_cache
|
|
self.is_changed = {}
|
|
|
|
async def get(self, node_id):
|
|
if node_id in self.is_changed:
|
|
return self.is_changed[node_id]
|
|
|
|
node = self.dynprompt.get_node(node_id)
|
|
class_type = node["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
has_is_changed = False
|
|
is_changed_name = None
|
|
if issubclass(class_def, _ComfyNodeInternal) and first_real_override(class_def, "fingerprint_inputs") is not None:
|
|
has_is_changed = True
|
|
is_changed_name = "fingerprint_inputs"
|
|
elif hasattr(class_def, "IS_CHANGED"):
|
|
has_is_changed = True
|
|
is_changed_name = "IS_CHANGED"
|
|
if not has_is_changed:
|
|
self.is_changed[node_id] = False
|
|
return self.is_changed[node_id]
|
|
|
|
if "is_changed" in node:
|
|
self.is_changed[node_id] = node["is_changed"]
|
|
return self.is_changed[node_id]
|
|
|
|
# Intentionally do not use cached outputs here. We only want constants in IS_CHANGED
|
|
input_data_all, _, hidden_inputs = get_input_data(node["inputs"], class_def, node_id, None)
|
|
try:
|
|
is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name)
|
|
is_changed = await resolve_map_node_over_list_results(is_changed)
|
|
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]
|
|
except Exception as e:
|
|
logging.warning("WARNING: {}".format(e))
|
|
node["is_changed"] = float("NaN")
|
|
finally:
|
|
self.is_changed[node_id] = node["is_changed"]
|
|
return self.is_changed[node_id]
|
|
|
|
|
|
class CacheEntry(NamedTuple):
|
|
ui: dict
|
|
outputs: list
|
|
|
|
|
|
class CacheType(Enum):
|
|
CLASSIC = 0
|
|
LRU = 1
|
|
NONE = 2
|
|
RAM_PRESSURE = 3
|
|
|
|
|
|
class CacheSet:
|
|
def __init__(self, cache_type=None, cache_args={}):
|
|
if cache_type == CacheType.NONE:
|
|
self.init_null_cache()
|
|
logging.info("Disabling intermediate node cache.")
|
|
elif cache_type == CacheType.RAM_PRESSURE:
|
|
cache_ram = cache_args.get("ram", 16.0)
|
|
self.init_ram_cache(cache_ram)
|
|
logging.info("Using RAM pressure cache.")
|
|
elif cache_type == CacheType.LRU:
|
|
cache_size = cache_args.get("lru", 0)
|
|
self.init_lru_cache(cache_size)
|
|
logging.info("Using LRU cache")
|
|
else:
|
|
self.init_classic_cache()
|
|
|
|
self.all = [self.outputs, self.objects]
|
|
|
|
# Performs like the old cache -- dump data ASAP
|
|
def init_classic_cache(self):
|
|
self.outputs = HierarchicalCache(CacheKeySetInputSignature)
|
|
self.objects = HierarchicalCache(CacheKeySetID)
|
|
|
|
def init_lru_cache(self, cache_size):
|
|
self.outputs = LRUCache(CacheKeySetInputSignature, max_size=cache_size)
|
|
self.objects = HierarchicalCache(CacheKeySetID)
|
|
|
|
def init_ram_cache(self, min_headroom):
|
|
self.outputs = RAMPressureCache(CacheKeySetInputSignature)
|
|
self.objects = HierarchicalCache(CacheKeySetID)
|
|
|
|
def init_null_cache(self):
|
|
self.outputs = NullCache()
|
|
self.objects = NullCache()
|
|
|
|
def recursive_debug_dump(self):
|
|
result = {
|
|
"outputs": self.outputs.recursive_debug_dump(),
|
|
}
|
|
return result
|
|
|
|
SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org")
|
|
|
|
def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}):
|
|
is_v3 = issubclass(class_def, _ComfyNodeInternal)
|
|
if is_v3:
|
|
valid_inputs, schema = class_def.INPUT_TYPES(include_hidden=False, return_schema=True)
|
|
else:
|
|
valid_inputs = class_def.INPUT_TYPES()
|
|
input_data_all = {}
|
|
missing_keys = {}
|
|
hidden_inputs_v3 = {}
|
|
for x in inputs:
|
|
input_data = inputs[x]
|
|
_, input_category, input_info = get_input_info(class_def, x, valid_inputs)
|
|
def mark_missing():
|
|
missing_keys[x] = True
|
|
input_data_all[x] = (None,)
|
|
if is_link(input_data) and (not input_info or not input_info.get("rawLink", False)):
|
|
input_unique_id = input_data[0]
|
|
output_index = input_data[1]
|
|
if execution_list is None:
|
|
mark_missing()
|
|
continue # This might be a lazily-evaluated input
|
|
cached = execution_list.get_cache(input_unique_id, unique_id)
|
|
if cached is None or cached.outputs is None:
|
|
mark_missing()
|
|
continue
|
|
if output_index >= len(cached.outputs):
|
|
mark_missing()
|
|
continue
|
|
obj = cached.outputs[output_index]
|
|
input_data_all[x] = obj
|
|
elif input_category is not None:
|
|
input_data_all[x] = [input_data]
|
|
|
|
if is_v3:
|
|
if schema.hidden:
|
|
if io.Hidden.prompt in schema.hidden:
|
|
hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {}
|
|
if io.Hidden.dynprompt in schema.hidden:
|
|
hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt
|
|
if io.Hidden.extra_pnginfo in schema.hidden:
|
|
hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None)
|
|
if io.Hidden.unique_id in schema.hidden:
|
|
hidden_inputs_v3[io.Hidden.unique_id] = unique_id
|
|
if io.Hidden.auth_token_comfy_org in schema.hidden:
|
|
hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None)
|
|
if io.Hidden.api_key_comfy_org in schema.hidden:
|
|
hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None)
|
|
else:
|
|
if "hidden" in valid_inputs:
|
|
h = valid_inputs["hidden"]
|
|
for x in h:
|
|
if h[x] == "PROMPT":
|
|
input_data_all[x] = [dynprompt.get_original_prompt() if dynprompt is not None else {}]
|
|
if h[x] == "DYNPROMPT":
|
|
input_data_all[x] = [dynprompt]
|
|
if h[x] == "EXTRA_PNGINFO":
|
|
input_data_all[x] = [extra_data.get('extra_pnginfo', None)]
|
|
if h[x] == "UNIQUE_ID":
|
|
input_data_all[x] = [unique_id]
|
|
if h[x] == "AUTH_TOKEN_COMFY_ORG":
|
|
input_data_all[x] = [extra_data.get("auth_token_comfy_org", None)]
|
|
if h[x] == "API_KEY_COMFY_ORG":
|
|
input_data_all[x] = [extra_data.get("api_key_comfy_org", None)]
|
|
return input_data_all, missing_keys, hidden_inputs_v3
|
|
|
|
map_node_over_list = None #Don't hook this please
|
|
|
|
async def resolve_map_node_over_list_results(results):
|
|
remaining = [x for x in results if isinstance(x, asyncio.Task) and not x.done()]
|
|
if len(remaining) == 0:
|
|
return [x.result() if isinstance(x, asyncio.Task) else x for x in results]
|
|
else:
|
|
done, pending = await asyncio.wait(remaining)
|
|
for task in done:
|
|
exc = task.exception()
|
|
if exc is not None:
|
|
raise exc
|
|
return [x.result() if isinstance(x, asyncio.Task) else x for x in results]
|
|
|
|
async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None):
|
|
# check if node wants the lists
|
|
input_is_list = getattr(obj, "INPUT_IS_LIST", False)
|
|
|
|
if len(input_data_all) == 0:
|
|
max_len_input = 0
|
|
else:
|
|
max_len_input = max(len(x) for x in input_data_all.values())
|
|
|
|
# get a slice of inputs, repeat last input when list isn't long enough
|
|
def slice_dict(d, i):
|
|
return {k: v[i if len(v) > i else -1] for k, v in d.items()}
|
|
|
|
results = []
|
|
async def process_inputs(inputs, index=None, input_is_list=False):
|
|
if allow_interrupt:
|
|
nodes.before_node_execution()
|
|
execution_block = None
|
|
for k, v in inputs.items():
|
|
if input_is_list:
|
|
for e in v:
|
|
if isinstance(e, ExecutionBlocker):
|
|
v = e
|
|
break
|
|
if isinstance(v, ExecutionBlocker):
|
|
execution_block = execution_block_cb(v) if execution_block_cb else v
|
|
break
|
|
if execution_block is None:
|
|
if pre_execute_cb is not None and index is not None:
|
|
pre_execute_cb(index)
|
|
# V3
|
|
if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)):
|
|
# if is just a class, then assign no resources or state, just create clone
|
|
if is_class(obj):
|
|
type_obj = obj
|
|
obj.VALIDATE_CLASS()
|
|
class_clone = obj.PREPARE_CLASS_CLONE(hidden_inputs)
|
|
# otherwise, use class instance to populate/reuse some fields
|
|
else:
|
|
type_obj = type(obj)
|
|
type_obj.VALIDATE_CLASS()
|
|
class_clone = type_obj.PREPARE_CLASS_CLONE(hidden_inputs)
|
|
f = make_locked_method_func(type_obj, func, class_clone)
|
|
# V1
|
|
else:
|
|
f = getattr(obj, func)
|
|
if inspect.iscoroutinefunction(f):
|
|
async def async_wrapper(f, prompt_id, unique_id, list_index, args):
|
|
with CurrentNodeContext(prompt_id, unique_id, list_index):
|
|
return await f(**args)
|
|
task = asyncio.create_task(async_wrapper(f, prompt_id, unique_id, index, args=inputs))
|
|
# Give the task a chance to execute without yielding
|
|
await asyncio.sleep(0)
|
|
if task.done():
|
|
result = task.result()
|
|
results.append(result)
|
|
else:
|
|
results.append(task)
|
|
else:
|
|
with CurrentNodeContext(prompt_id, unique_id, index):
|
|
result = f(**inputs)
|
|
results.append(result)
|
|
else:
|
|
results.append(execution_block)
|
|
|
|
if input_is_list:
|
|
await process_inputs(input_data_all, 0, input_is_list=input_is_list)
|
|
elif max_len_input == 0:
|
|
await process_inputs({})
|
|
else:
|
|
for i in range(max_len_input):
|
|
input_dict = slice_dict(input_data_all, i)
|
|
await process_inputs(input_dict, i)
|
|
return results
|
|
|
|
|
|
def merge_result_data(results, obj):
|
|
# check which outputs need concatenating
|
|
output = []
|
|
output_is_list = [False] * len(results[0])
|
|
if hasattr(obj, "OUTPUT_IS_LIST"):
|
|
output_is_list = obj.OUTPUT_IS_LIST
|
|
|
|
# merge node execution results
|
|
for i, is_list in zip(range(len(results[0])), output_is_list):
|
|
if is_list:
|
|
value = []
|
|
for o in results:
|
|
if isinstance(o[i], ExecutionBlocker):
|
|
value.append(o[i])
|
|
else:
|
|
value.extend(o[i])
|
|
output.append(value)
|
|
else:
|
|
output.append([o[i] for o in results])
|
|
return output
|
|
|
|
async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None):
|
|
return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs)
|
|
has_pending_task = any(isinstance(r, asyncio.Task) and not r.done() for r in return_values)
|
|
if has_pending_task:
|
|
return return_values, {}, False, has_pending_task
|
|
output, ui, has_subgraph = get_output_from_returns(return_values, obj)
|
|
return output, ui, has_subgraph, False
|
|
|
|
def get_output_from_returns(return_values, obj):
|
|
results = []
|
|
uis = []
|
|
subgraph_results = []
|
|
has_subgraph = False
|
|
for i in range(len(return_values)):
|
|
r = return_values[i]
|
|
if isinstance(r, dict):
|
|
if 'ui' in r:
|
|
uis.append(r['ui'])
|
|
if 'expand' in r:
|
|
# Perform an expansion, but do not append results
|
|
has_subgraph = True
|
|
new_graph = r['expand']
|
|
result = r.get("result", None)
|
|
if isinstance(result, ExecutionBlocker):
|
|
result = tuple([result] * len(obj.RETURN_TYPES))
|
|
subgraph_results.append((new_graph, result))
|
|
elif 'result' in r:
|
|
result = r.get("result", None)
|
|
if isinstance(result, ExecutionBlocker):
|
|
result = tuple([result] * len(obj.RETURN_TYPES))
|
|
results.append(result)
|
|
subgraph_results.append((None, result))
|
|
elif isinstance(r, _NodeOutputInternal):
|
|
# V3
|
|
if r.ui is not None:
|
|
if isinstance(r.ui, dict):
|
|
uis.append(r.ui)
|
|
else:
|
|
uis.append(r.ui.as_dict())
|
|
if r.expand is not None:
|
|
has_subgraph = True
|
|
new_graph = r.expand
|
|
result = r.result
|
|
if r.block_execution is not None:
|
|
result = tuple([ExecutionBlocker(r.block_execution)] * len(obj.RETURN_TYPES))
|
|
subgraph_results.append((new_graph, result))
|
|
elif r.result is not None:
|
|
result = r.result
|
|
if r.block_execution is not None:
|
|
result = tuple([ExecutionBlocker(r.block_execution)] * len(obj.RETURN_TYPES))
|
|
results.append(result)
|
|
subgraph_results.append((None, result))
|
|
else:
|
|
if isinstance(r, ExecutionBlocker):
|
|
r = tuple([r] * len(obj.RETURN_TYPES))
|
|
results.append(r)
|
|
subgraph_results.append((None, r))
|
|
|
|
if has_subgraph:
|
|
output = subgraph_results
|
|
elif len(results) > 0:
|
|
output = merge_result_data(results, obj)
|
|
else:
|
|
output = []
|
|
ui = dict()
|
|
# TODO: Think there's an existing bug here
|
|
# If we're performing a subgraph expansion, we probably shouldn't be returning UI values yet.
|
|
# They'll get cached without the completed subgraphs. It's an edge case and I'm not aware of
|
|
# any nodes that use both subgraph expansion and custom UI outputs, but might be a problem in the future.
|
|
if len(uis) > 0:
|
|
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
|
return output, ui, has_subgraph
|
|
|
|
def format_value(x):
|
|
if x is None:
|
|
return None
|
|
elif isinstance(x, (int, float, bool, str)):
|
|
return x
|
|
else:
|
|
return str(x)
|
|
|
|
async def execute(server, dynprompt, caches, current_item, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes, ui_outputs):
|
|
unique_id = current_item
|
|
real_node_id = dynprompt.get_real_node_id(unique_id)
|
|
display_node_id = dynprompt.get_display_node_id(unique_id)
|
|
parent_node_id = dynprompt.get_parent_node_id(unique_id)
|
|
inputs = dynprompt.get_node(unique_id)['inputs']
|
|
class_type = dynprompt.get_node(unique_id)['class_type']
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
cached = caches.outputs.get(unique_id)
|
|
if cached is not None:
|
|
if server.client_id is not None:
|
|
cached_ui = cached.ui or {}
|
|
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": cached_ui.get("output",None), "prompt_id": prompt_id }, server.client_id)
|
|
if cached.ui is not None:
|
|
ui_outputs[unique_id] = cached.ui
|
|
get_progress_state().finish_progress(unique_id)
|
|
execution_list.cache_update(unique_id, cached)
|
|
return (ExecutionResult.SUCCESS, None, None)
|
|
|
|
input_data_all = None
|
|
try:
|
|
if unique_id in pending_async_nodes:
|
|
results = []
|
|
for r in pending_async_nodes[unique_id]:
|
|
if isinstance(r, asyncio.Task):
|
|
try:
|
|
results.append(r.result())
|
|
except Exception as ex:
|
|
# An async task failed - propagate the exception up
|
|
del pending_async_nodes[unique_id]
|
|
raise ex
|
|
else:
|
|
results.append(r)
|
|
del pending_async_nodes[unique_id]
|
|
output_data, output_ui, has_subgraph = get_output_from_returns(results, class_def)
|
|
elif unique_id in pending_subgraph_results:
|
|
cached_results = pending_subgraph_results[unique_id]
|
|
resolved_outputs = []
|
|
for is_subgraph, result in cached_results:
|
|
if not is_subgraph:
|
|
resolved_outputs.append(result)
|
|
else:
|
|
resolved_output = []
|
|
for r in result:
|
|
if is_link(r):
|
|
source_node, source_output = r[0], r[1]
|
|
node_cached = execution_list.get_cache(source_node, unique_id)
|
|
for o in node_cached.outputs[source_output]:
|
|
resolved_output.append(o)
|
|
|
|
else:
|
|
resolved_output.append(r)
|
|
resolved_outputs.append(tuple(resolved_output))
|
|
output_data = merge_result_data(resolved_outputs, class_def)
|
|
output_ui = []
|
|
del pending_subgraph_results[unique_id]
|
|
has_subgraph = False
|
|
else:
|
|
get_progress_state().start_progress(unique_id)
|
|
input_data_all, missing_keys, hidden_inputs = get_input_data(inputs, class_def, unique_id, execution_list, dynprompt, extra_data)
|
|
if server.client_id is not None:
|
|
server.last_node_id = display_node_id
|
|
server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id)
|
|
|
|
obj = caches.objects.get(unique_id)
|
|
if obj is None:
|
|
obj = class_def()
|
|
caches.objects.set(unique_id, obj)
|
|
|
|
if issubclass(class_def, _ComfyNodeInternal):
|
|
lazy_status_present = first_real_override(class_def, "check_lazy_status") is not None
|
|
else:
|
|
lazy_status_present = getattr(obj, "check_lazy_status", None) is not None
|
|
if lazy_status_present:
|
|
required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, hidden_inputs=hidden_inputs)
|
|
required_inputs = await resolve_map_node_over_list_results(required_inputs)
|
|
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
|
|
required_inputs = [x for x in required_inputs if isinstance(x,str) and (
|
|
x not in input_data_all or x in missing_keys
|
|
)]
|
|
if len(required_inputs) > 0:
|
|
for i in required_inputs:
|
|
execution_list.make_input_strong_link(unique_id, i)
|
|
return (ExecutionResult.PENDING, None, None)
|
|
|
|
def execution_block_cb(block):
|
|
if block.message is not None:
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": unique_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
|
|
"exception_message": f"Execution Blocked: {block.message}",
|
|
"exception_type": "ExecutionBlocked",
|
|
"traceback": [],
|
|
"current_inputs": [],
|
|
"current_outputs": [],
|
|
}
|
|
server.send_sync("execution_error", mes, server.client_id)
|
|
return ExecutionBlocker(None)
|
|
else:
|
|
return block
|
|
def pre_execute_cb(call_index):
|
|
# TODO - How to handle this with async functions without contextvars (which requires Python 3.12)?
|
|
GraphBuilder.set_default_prefix(unique_id, call_index, 0)
|
|
output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs)
|
|
if has_pending_tasks:
|
|
pending_async_nodes[unique_id] = output_data
|
|
unblock = execution_list.add_external_block(unique_id)
|
|
async def await_completion():
|
|
tasks = [x for x in output_data if isinstance(x, asyncio.Task)]
|
|
await asyncio.gather(*tasks, return_exceptions=True)
|
|
unblock()
|
|
asyncio.create_task(await_completion())
|
|
return (ExecutionResult.PENDING, None, None)
|
|
if len(output_ui) > 0:
|
|
ui_outputs[unique_id] = {
|
|
"meta": {
|
|
"node_id": unique_id,
|
|
"display_node": display_node_id,
|
|
"parent_node": parent_node_id,
|
|
"real_node_id": real_node_id,
|
|
},
|
|
"output": output_ui
|
|
}
|
|
if server.client_id is not None:
|
|
server.send_sync("executed", { "node": unique_id, "display_node": display_node_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
|
|
if has_subgraph:
|
|
cached_outputs = []
|
|
new_node_ids = []
|
|
new_output_ids = []
|
|
new_output_links = []
|
|
for i in range(len(output_data)):
|
|
new_graph, node_outputs = output_data[i]
|
|
if new_graph is None:
|
|
cached_outputs.append((False, node_outputs))
|
|
else:
|
|
for node_id, node_info in new_graph.items():
|
|
new_node_ids.append(node_id)
|
|
display_id = node_info.get("override_display_id", unique_id)
|
|
dynprompt.add_ephemeral_node(node_id, node_info, unique_id, display_id)
|
|
# Figure out if the newly created node is an output node
|
|
class_type = node_info["class_type"]
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True:
|
|
new_output_ids.append(node_id)
|
|
for i in range(len(node_outputs)):
|
|
if is_link(node_outputs[i]):
|
|
from_node_id, from_socket = node_outputs[i][0], node_outputs[i][1]
|
|
new_output_links.append((from_node_id, from_socket))
|
|
cached_outputs.append((True, node_outputs))
|
|
new_node_ids = set(new_node_ids)
|
|
for cache in caches.all:
|
|
subcache = await cache.ensure_subcache_for(unique_id, new_node_ids)
|
|
subcache.clean_unused()
|
|
for node_id in new_output_ids:
|
|
execution_list.add_node(node_id)
|
|
execution_list.cache_link(node_id, unique_id)
|
|
for link in new_output_links:
|
|
execution_list.add_strong_link(link[0], link[1], unique_id)
|
|
pending_subgraph_results[unique_id] = cached_outputs
|
|
return (ExecutionResult.PENDING, None, None)
|
|
|
|
cache_entry = CacheEntry(ui=ui_outputs.get(unique_id), outputs=output_data)
|
|
execution_list.cache_update(unique_id, cache_entry)
|
|
caches.outputs.set(unique_id, cache_entry)
|
|
|
|
except comfy.model_management.InterruptProcessingException as iex:
|
|
logging.info("Processing interrupted")
|
|
|
|
# skip formatting inputs/outputs
|
|
error_details = {
|
|
"node_id": real_node_id,
|
|
}
|
|
|
|
return (ExecutionResult.FAILURE, error_details, iex)
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
exception_type = full_type_name(typ)
|
|
input_data_formatted = {}
|
|
if input_data_all is not None:
|
|
input_data_formatted = {}
|
|
for name, inputs in input_data_all.items():
|
|
input_data_formatted[name] = [format_value(x) for x in inputs]
|
|
|
|
logging.error(f"!!! Exception during processing !!! {ex}")
|
|
logging.error(traceback.format_exc())
|
|
tips = ""
|
|
|
|
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
|
|
tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number."
|
|
logging.error("Got an OOM, unloading all loaded models.")
|
|
comfy.model_management.unload_all_models()
|
|
|
|
error_details = {
|
|
"node_id": real_node_id,
|
|
"exception_message": "{}\n{}".format(ex, tips),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"current_inputs": input_data_formatted
|
|
}
|
|
|
|
return (ExecutionResult.FAILURE, error_details, ex)
|
|
|
|
get_progress_state().finish_progress(unique_id)
|
|
executed.add(unique_id)
|
|
|
|
return (ExecutionResult.SUCCESS, None, None)
|
|
|
|
class PromptExecutor:
|
|
def __init__(self, server, cache_type=False, cache_args=None):
|
|
self.cache_args = cache_args
|
|
self.cache_type = cache_type
|
|
self.server = server
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.caches = CacheSet(cache_type=self.cache_type, cache_args=self.cache_args)
|
|
self.status_messages = []
|
|
self.success = True
|
|
|
|
def add_message(self, event, data: dict, broadcast: bool):
|
|
data = {
|
|
**data,
|
|
"timestamp": int(time.time() * 1000),
|
|
}
|
|
self.status_messages.append((event, data))
|
|
if self.server.client_id is not None or broadcast:
|
|
self.server.send_sync(event, data, self.server.client_id)
|
|
|
|
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
|
|
node_id = error["node_id"]
|
|
class_type = prompt[node_id]["class_type"]
|
|
|
|
# First, send back the status to the frontend depending
|
|
# on the exception type
|
|
if isinstance(ex, comfy.model_management.InterruptProcessingException):
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
}
|
|
self.add_message("execution_interrupted", mes, broadcast=True)
|
|
else:
|
|
mes = {
|
|
"prompt_id": prompt_id,
|
|
"node_id": node_id,
|
|
"node_type": class_type,
|
|
"executed": list(executed),
|
|
"exception_message": error["exception_message"],
|
|
"exception_type": error["exception_type"],
|
|
"traceback": error["traceback"],
|
|
"current_inputs": error["current_inputs"],
|
|
"current_outputs": list(current_outputs),
|
|
}
|
|
self.add_message("execution_error", mes, broadcast=False)
|
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
|
asyncio.run(self.execute_async(prompt, prompt_id, extra_data, execute_outputs))
|
|
|
|
async def execute_async(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
|
nodes.interrupt_processing(False)
|
|
|
|
if "client_id" in extra_data:
|
|
self.server.client_id = extra_data["client_id"]
|
|
else:
|
|
self.server.client_id = None
|
|
|
|
self.status_messages = []
|
|
self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False)
|
|
|
|
with torch.inference_mode():
|
|
dynamic_prompt = DynamicPrompt(prompt)
|
|
reset_progress_state(prompt_id, dynamic_prompt)
|
|
add_progress_handler(WebUIProgressHandler(self.server))
|
|
is_changed_cache = IsChangedCache(prompt_id, dynamic_prompt, self.caches.outputs)
|
|
for cache in self.caches.all:
|
|
await cache.set_prompt(dynamic_prompt, prompt.keys(), is_changed_cache)
|
|
cache.clean_unused()
|
|
|
|
cached_nodes = []
|
|
for node_id in prompt:
|
|
if self.caches.outputs.get(node_id) is not None:
|
|
cached_nodes.append(node_id)
|
|
|
|
comfy.model_management.cleanup_models_gc()
|
|
self.add_message("execution_cached",
|
|
{ "nodes": cached_nodes, "prompt_id": prompt_id},
|
|
broadcast=False)
|
|
pending_subgraph_results = {}
|
|
pending_async_nodes = {} # TODO - Unify this with pending_subgraph_results
|
|
ui_node_outputs = {}
|
|
executed = set()
|
|
execution_list = ExecutionList(dynamic_prompt, self.caches.outputs)
|
|
current_outputs = self.caches.outputs.all_node_ids()
|
|
for node_id in list(execute_outputs):
|
|
execution_list.add_node(node_id)
|
|
|
|
while not execution_list.is_empty():
|
|
node_id, error, ex = await execution_list.stage_node_execution()
|
|
if error is not None:
|
|
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
|
|
break
|
|
|
|
assert node_id is not None, "Node ID should not be None at this point"
|
|
result, error, ex = await execute(self.server, dynamic_prompt, self.caches, node_id, extra_data, executed, prompt_id, execution_list, pending_subgraph_results, pending_async_nodes, ui_node_outputs)
|
|
self.success = result != ExecutionResult.FAILURE
|
|
if result == ExecutionResult.FAILURE:
|
|
self.handle_execution_error(prompt_id, dynamic_prompt.original_prompt, current_outputs, executed, error, ex)
|
|
break
|
|
elif result == ExecutionResult.PENDING:
|
|
execution_list.unstage_node_execution()
|
|
else: # result == ExecutionResult.SUCCESS:
|
|
execution_list.complete_node_execution()
|
|
self.caches.outputs.poll(ram_headroom=self.cache_args["ram"])
|
|
else:
|
|
# Only execute when the while-loop ends without break
|
|
self.add_message("execution_success", { "prompt_id": prompt_id }, broadcast=False)
|
|
|
|
ui_outputs = {}
|
|
meta_outputs = {}
|
|
for node_id, ui_info in ui_node_outputs.items():
|
|
ui_outputs[node_id] = ui_info["output"]
|
|
meta_outputs[node_id] = ui_info["meta"]
|
|
self.history_result = {
|
|
"outputs": ui_outputs,
|
|
"meta": meta_outputs,
|
|
}
|
|
self.server.last_node_id = None
|
|
if comfy.model_management.DISABLE_SMART_MEMORY:
|
|
comfy.model_management.unload_all_models()
|
|
|
|
|
|
async def validate_inputs(prompt_id, prompt, item, validated):
|
|
unique_id = item
|
|
if unique_id in validated:
|
|
return validated[unique_id]
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
class_type = prompt[unique_id]['class_type']
|
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
class_inputs = obj_class.INPUT_TYPES()
|
|
valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{})))
|
|
|
|
errors = []
|
|
valid = True
|
|
|
|
validate_function_inputs = []
|
|
validate_has_kwargs = False
|
|
if issubclass(obj_class, _ComfyNodeInternal):
|
|
validate_function_name = "validate_inputs"
|
|
validate_function = first_real_override(obj_class, validate_function_name)
|
|
else:
|
|
validate_function_name = "VALIDATE_INPUTS"
|
|
validate_function = getattr(obj_class, validate_function_name, None)
|
|
if validate_function is not None:
|
|
argspec = inspect.getfullargspec(validate_function)
|
|
validate_function_inputs = argspec.args
|
|
validate_has_kwargs = argspec.varkw is not None
|
|
received_types = {}
|
|
|
|
for x in valid_inputs:
|
|
input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
|
|
assert extra_info is not None
|
|
if x not in inputs:
|
|
if input_category == "required":
|
|
error = {
|
|
"type": "required_input_missing",
|
|
"message": "Required input is missing",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
val = inputs[x]
|
|
info = (input_type, extra_info)
|
|
if isinstance(val, list):
|
|
if len(val) != 2:
|
|
error = {
|
|
"type": "bad_linked_input",
|
|
"message": "Bad linked input, must be a length-2 list of [node_id, slot_index]",
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
o_id = val[0]
|
|
o_class_type = prompt[o_id]['class_type']
|
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
|
received_type = r[val[1]]
|
|
received_types[x] = received_type
|
|
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, input_type):
|
|
details = f"{x}, received_type({received_type}) mismatch input_type({input_type})"
|
|
error = {
|
|
"type": "return_type_mismatch",
|
|
"message": "Return type mismatch between linked nodes",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_type": received_type,
|
|
"linked_node": val
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
try:
|
|
r = await validate_inputs(prompt_id, prompt, o_id, validated)
|
|
if r[0] is False:
|
|
# `r` will be set in `validated[o_id]` already
|
|
valid = False
|
|
continue
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_inner_validation",
|
|
"message": "Exception when validating inner node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"exception_message": str(ex),
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb),
|
|
"linked_node": val
|
|
}
|
|
}]
|
|
validated[o_id] = (False, reasons, o_id)
|
|
continue
|
|
else:
|
|
try:
|
|
# Unwraps values wrapped in __value__ key. This is used to pass
|
|
# list widget value to execution, as by default list value is
|
|
# reserved to represent the connection between nodes.
|
|
if isinstance(val, dict) and "__value__" in val:
|
|
val = val["__value__"]
|
|
inputs[x] = val
|
|
|
|
if input_type == "INT":
|
|
val = int(val)
|
|
inputs[x] = val
|
|
if input_type == "FLOAT":
|
|
val = float(val)
|
|
inputs[x] = val
|
|
if input_type == "STRING":
|
|
val = str(val)
|
|
inputs[x] = val
|
|
if input_type == "BOOLEAN":
|
|
val = bool(val)
|
|
inputs[x] = val
|
|
except Exception as ex:
|
|
error = {
|
|
"type": "invalid_input_type",
|
|
"message": f"Failed to convert an input value to a {input_type} value",
|
|
"details": f"{x}, {val}, {ex}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
"exception_message": str(ex)
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if x not in validate_function_inputs and not validate_has_kwargs:
|
|
if "min" in extra_info and val < extra_info["min"]:
|
|
error = {
|
|
"type": "value_smaller_than_min",
|
|
"message": "Value {} smaller than min of {}".format(val, extra_info["min"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
if "max" in extra_info and val > extra_info["max"]:
|
|
error = {
|
|
"type": "value_bigger_than_max",
|
|
"message": "Value {} bigger than max of {}".format(val, extra_info["max"]),
|
|
"details": f"{x}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": info,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if isinstance(input_type, list):
|
|
combo_options = input_type
|
|
if val not in combo_options:
|
|
input_config = info
|
|
list_info = ""
|
|
|
|
# Don't send back gigantic lists like if they're lots of
|
|
# scanned model filepaths
|
|
if len(combo_options) > 20:
|
|
list_info = f"(list of length {len(combo_options)})"
|
|
input_config = None
|
|
else:
|
|
list_info = str(combo_options)
|
|
|
|
error = {
|
|
"type": "value_not_in_list",
|
|
"message": "Value not in list",
|
|
"details": f"{x}: '{val}' not in {list_info}",
|
|
"extra_info": {
|
|
"input_name": x,
|
|
"input_config": input_config,
|
|
"received_value": val,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if len(validate_function_inputs) > 0 or validate_has_kwargs:
|
|
input_data_all, _, hidden_inputs = get_input_data(inputs, obj_class, unique_id)
|
|
input_filtered = {}
|
|
for x in input_data_all:
|
|
if x in validate_function_inputs or validate_has_kwargs:
|
|
input_filtered[x] = input_data_all[x]
|
|
if 'input_types' in validate_function_inputs:
|
|
input_filtered['input_types'] = [received_types]
|
|
|
|
ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, hidden_inputs=hidden_inputs)
|
|
ret = await resolve_map_node_over_list_results(ret)
|
|
for x in input_filtered:
|
|
for i, r in enumerate(ret):
|
|
if r is not True and not isinstance(r, ExecutionBlocker):
|
|
details = f"{x}"
|
|
if r is not False:
|
|
details += f" - {str(r)}"
|
|
|
|
error = {
|
|
"type": "custom_validation_failed",
|
|
"message": "Custom validation failed for node",
|
|
"details": details,
|
|
"extra_info": {
|
|
"input_name": x,
|
|
}
|
|
}
|
|
errors.append(error)
|
|
continue
|
|
|
|
if len(errors) > 0 or valid is not True:
|
|
ret = (False, errors, unique_id)
|
|
else:
|
|
ret = (True, [], unique_id)
|
|
|
|
validated[unique_id] = ret
|
|
return ret
|
|
|
|
def full_type_name(klass):
|
|
module = klass.__module__
|
|
if module == 'builtins':
|
|
return klass.__qualname__
|
|
return module + '.' + klass.__qualname__
|
|
|
|
async def validate_prompt(prompt_id, prompt, partial_execution_list: Union[list[str], None]):
|
|
outputs = set()
|
|
for x in prompt:
|
|
if 'class_type' not in prompt[x]:
|
|
error = {
|
|
"type": "invalid_prompt",
|
|
"message": "Cannot execute because a node is missing the class_type property.",
|
|
"details": f"Node ID '#{x}'",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], {})
|
|
|
|
class_type = prompt[x]['class_type']
|
|
class_ = nodes.NODE_CLASS_MAPPINGS.get(class_type, None)
|
|
if class_ is None:
|
|
error = {
|
|
"type": "invalid_prompt",
|
|
"message": f"Cannot execute because node {class_type} does not exist.",
|
|
"details": f"Node ID '#{x}'",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], {})
|
|
|
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE is True:
|
|
if partial_execution_list is None or x in partial_execution_list:
|
|
outputs.add(x)
|
|
|
|
if len(outputs) == 0:
|
|
error = {
|
|
"type": "prompt_no_outputs",
|
|
"message": "Prompt has no outputs",
|
|
"details": "",
|
|
"extra_info": {}
|
|
}
|
|
return (False, error, [], {})
|
|
|
|
good_outputs = set()
|
|
errors = []
|
|
node_errors = {}
|
|
validated = {}
|
|
for o in outputs:
|
|
valid = False
|
|
reasons = []
|
|
try:
|
|
m = await validate_inputs(prompt_id, prompt, o, validated)
|
|
valid = m[0]
|
|
reasons = m[1]
|
|
except Exception as ex:
|
|
typ, _, tb = sys.exc_info()
|
|
valid = False
|
|
exception_type = full_type_name(typ)
|
|
reasons = [{
|
|
"type": "exception_during_validation",
|
|
"message": "Exception when validating node",
|
|
"details": str(ex),
|
|
"extra_info": {
|
|
"exception_type": exception_type,
|
|
"traceback": traceback.format_tb(tb)
|
|
}
|
|
}]
|
|
validated[o] = (False, reasons, o)
|
|
|
|
if valid is True:
|
|
good_outputs.add(o)
|
|
else:
|
|
logging.error(f"Failed to validate prompt for output {o}:")
|
|
if len(reasons) > 0:
|
|
logging.error("* (prompt):")
|
|
for reason in reasons:
|
|
logging.error(f" - {reason['message']}: {reason['details']}")
|
|
errors += [(o, reasons)]
|
|
for node_id, result in validated.items():
|
|
valid = result[0]
|
|
reasons = result[1]
|
|
# If a node upstream has errors, the nodes downstream will also
|
|
# be reported as invalid, but there will be no errors attached.
|
|
# So don't return those nodes as having errors in the response.
|
|
if valid is not True and len(reasons) > 0:
|
|
if node_id not in node_errors:
|
|
class_type = prompt[node_id]['class_type']
|
|
node_errors[node_id] = {
|
|
"errors": reasons,
|
|
"dependent_outputs": [],
|
|
"class_type": class_type
|
|
}
|
|
logging.error(f"* {class_type} {node_id}:")
|
|
for reason in reasons:
|
|
logging.error(f" - {reason['message']}: {reason['details']}")
|
|
node_errors[node_id]["dependent_outputs"].append(o)
|
|
logging.error("Output will be ignored")
|
|
|
|
if len(good_outputs) == 0:
|
|
errors_list = []
|
|
for o, errors in errors:
|
|
for error in errors:
|
|
errors_list.append(f"{error['message']}: {error['details']}")
|
|
errors_list = "\n".join(errors_list)
|
|
|
|
error = {
|
|
"type": "prompt_outputs_failed_validation",
|
|
"message": "Prompt outputs failed validation",
|
|
"details": errors_list,
|
|
"extra_info": {}
|
|
}
|
|
|
|
return (False, error, list(good_outputs), node_errors)
|
|
|
|
return (True, None, list(good_outputs), node_errors)
|
|
|
|
MAXIMUM_HISTORY_SIZE = 10000
|
|
|
|
class PromptQueue:
|
|
def __init__(self, server):
|
|
self.server = server
|
|
self.mutex = threading.RLock()
|
|
self.not_empty = threading.Condition(self.mutex)
|
|
self.task_counter = 0
|
|
self.queue = []
|
|
self.currently_running = {}
|
|
self.history = {}
|
|
self.flags = {}
|
|
|
|
def put(self, item):
|
|
with self.mutex:
|
|
heapq.heappush(self.queue, item)
|
|
self.server.queue_updated()
|
|
self.not_empty.notify()
|
|
|
|
def get(self, timeout=None):
|
|
with self.not_empty:
|
|
while len(self.queue) == 0:
|
|
self.not_empty.wait(timeout=timeout)
|
|
if timeout is not None and len(self.queue) == 0:
|
|
return None
|
|
item = heapq.heappop(self.queue)
|
|
i = self.task_counter
|
|
self.currently_running[i] = copy.deepcopy(item)
|
|
self.task_counter += 1
|
|
self.server.queue_updated()
|
|
return (item, i)
|
|
|
|
class ExecutionStatus(NamedTuple):
|
|
status_str: Literal['success', 'error']
|
|
completed: bool
|
|
messages: List[str]
|
|
|
|
def task_done(self, item_id, history_result,
|
|
status: Optional['PromptQueue.ExecutionStatus'], process_item=None):
|
|
with self.mutex:
|
|
prompt = self.currently_running.pop(item_id)
|
|
if len(self.history) > MAXIMUM_HISTORY_SIZE:
|
|
self.history.pop(next(iter(self.history)))
|
|
|
|
status_dict: Optional[dict] = None
|
|
if status is not None:
|
|
status_dict = copy.deepcopy(status._asdict())
|
|
|
|
if process_item is not None:
|
|
prompt = process_item(prompt)
|
|
|
|
self.history[prompt[1]] = {
|
|
"prompt": prompt,
|
|
"outputs": {},
|
|
'status': status_dict,
|
|
}
|
|
self.history[prompt[1]].update(history_result)
|
|
self.server.queue_updated()
|
|
|
|
# Note: slow
|
|
def get_current_queue(self):
|
|
with self.mutex:
|
|
out = []
|
|
for x in self.currently_running.values():
|
|
out += [x]
|
|
return (out, copy.deepcopy(self.queue))
|
|
|
|
# read-safe as long as queue items are immutable
|
|
def get_current_queue_volatile(self):
|
|
with self.mutex:
|
|
running = [x for x in self.currently_running.values()]
|
|
queued = copy.copy(self.queue)
|
|
return (running, queued)
|
|
|
|
def get_tasks_remaining(self):
|
|
with self.mutex:
|
|
return len(self.queue) + len(self.currently_running)
|
|
|
|
def wipe_queue(self):
|
|
with self.mutex:
|
|
self.queue = []
|
|
self.server.queue_updated()
|
|
|
|
def delete_queue_item(self, function):
|
|
with self.mutex:
|
|
for x in range(len(self.queue)):
|
|
if function(self.queue[x]):
|
|
if len(self.queue) == 1:
|
|
self.wipe_queue()
|
|
else:
|
|
self.queue.pop(x)
|
|
heapq.heapify(self.queue)
|
|
self.server.queue_updated()
|
|
return True
|
|
return False
|
|
|
|
def get_history(self, prompt_id=None, max_items=None, offset=-1, map_function=None):
|
|
with self.mutex:
|
|
if prompt_id is None:
|
|
out = {}
|
|
i = 0
|
|
if offset < 0 and max_items is not None:
|
|
offset = len(self.history) - max_items
|
|
for k in self.history:
|
|
if i >= offset:
|
|
p = self.history[k]
|
|
if map_function is not None:
|
|
p = map_function(p)
|
|
out[k] = p
|
|
if max_items is not None and len(out) >= max_items:
|
|
break
|
|
i += 1
|
|
return out
|
|
elif prompt_id in self.history:
|
|
p = self.history[prompt_id]
|
|
if map_function is None:
|
|
p = copy.deepcopy(p)
|
|
else:
|
|
p = map_function(p)
|
|
return {prompt_id: p}
|
|
else:
|
|
return {}
|
|
|
|
def wipe_history(self):
|
|
with self.mutex:
|
|
self.history = {}
|
|
|
|
def delete_history_item(self, id_to_delete):
|
|
with self.mutex:
|
|
self.history.pop(id_to_delete, None)
|
|
|
|
def set_flag(self, name, data):
|
|
with self.mutex:
|
|
self.flags[name] = data
|
|
self.not_empty.notify()
|
|
|
|
def get_flags(self, reset=True):
|
|
with self.mutex:
|
|
if reset:
|
|
ret = self.flags
|
|
self.flags = {}
|
|
return ret
|
|
else:
|
|
return self.flags.copy()
|