mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-10 06:24:26 +08:00
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
from typing_extensions import override
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from comfy_api.latest import ComfyExtension, io
|
|
|
|
|
|
class Mahiro(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="Mahiro",
|
|
display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)",
|
|
category="_for_testing",
|
|
description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.",
|
|
inputs=[
|
|
io.Model.Input("model"),
|
|
],
|
|
outputs=[
|
|
io.Model.Output(display_name="patched_model"),
|
|
],
|
|
is_experimental=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model) -> io.NodeOutput:
|
|
m = model.clone()
|
|
def mahiro_normd(args):
|
|
scale: float = args['cond_scale']
|
|
cond_p: torch.Tensor = args['cond_denoised']
|
|
uncond_p: torch.Tensor = args['uncond_denoised']
|
|
#naive leap
|
|
leap = cond_p * scale
|
|
#sim with uncond leap
|
|
u_leap = uncond_p * scale
|
|
cfg = args["denoised"]
|
|
merge = (leap + cfg) / 2
|
|
normu = torch.sqrt(u_leap.abs()) * u_leap.sign()
|
|
normm = torch.sqrt(merge.abs()) * merge.sign()
|
|
sim = F.cosine_similarity(normu, normm).mean()
|
|
simsc = 2 * (sim+1)
|
|
wm = (simsc*cfg + (4-simsc)*leap) / 4
|
|
return wm
|
|
m.set_model_sampler_post_cfg_function(mahiro_normd)
|
|
return io.NodeOutput(m)
|
|
|
|
|
|
class MahiroExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
|
return [
|
|
Mahiro,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> MahiroExtension:
|
|
return MahiroExtension()
|