mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 14:04:26 +08:00
* Initial Chroma Radiance support * Minor Chroma Radiance cleanups * Update Radiance nodes to ensure latents/images are on the intermediate device * Fix Chroma Radiance memory estimation. * Increase Chroma Radiance memory usage factor * Increase Chroma Radiance memory usage factor once again * Ensure images are multiples of 16 for Chroma Radiance Add batch dimension and fix channels when necessary in ChromaRadianceImageToLatent node * Tile Chroma Radiance NeRF to reduce memory consumption, update memory usage factor * Update Radiance to support conv nerf final head type. * Allow setting NeRF embedder dtype for Radiance Bump Radiance nerf tile size to 32 Support EasyCache/LazyCache on Radiance (maybe) * Add ChromaRadianceStubVAE node * Crop Radiance image inputs to multiples of 16 instead of erroring to be in line with existing VAE behavior * Convert Chroma Radiance nodes to V3 schema. * Add ChromaRadianceOptions node and backend support. Cleanups/refactoring to reduce code duplication with Chroma. * Fix overriding the NeRF embedder dtype for Chroma Radiance * Minor Chroma Radiance cleanups * Move Chroma Radiance to its own directory in ldm Minor code cleanups and tooltip improvements * Fix Chroma Radiance embedder dtype overriding * Remove Radiance dynamic nerf_embedder dtype override feature * Unbork Radiance NeRF embedder init * Remove Chroma Radiance image conversion and stub VAE nodes Add a chroma_radiance option to the VAELoader builtin node which uses comfy.sd.PixelspaceConversionVAE Add a PixelspaceConversionVAE to comfy.sd for converting BHWC 0..1 <-> BCHW -1..1
115 lines
4.1 KiB
Python
115 lines
4.1 KiB
Python
from typing_extensions import override
|
|
from typing import Callable
|
|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
from comfy_api.latest import ComfyExtension, io
|
|
|
|
import nodes
|
|
|
|
class EmptyChromaRadianceLatentImage(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls) -> io.Schema:
|
|
return io.Schema(
|
|
node_id="EmptyChromaRadianceLatentImage",
|
|
category="latent/chroma_radiance",
|
|
inputs=[
|
|
io.Int.Input(id="width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
|
io.Int.Input(id="height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
|
io.Int.Input(id="batch_size", default=1, min=1, max=4096),
|
|
],
|
|
outputs=[io.Latent().Output()],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, *, width: int, height: int, batch_size: int=1) -> io.NodeOutput:
|
|
latent = torch.zeros((batch_size, 3, height, width), device=comfy.model_management.intermediate_device())
|
|
return io.NodeOutput({"samples":latent})
|
|
|
|
|
|
class ChromaRadianceOptions(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls) -> io.Schema:
|
|
return io.Schema(
|
|
node_id="ChromaRadianceOptions",
|
|
category="model_patches/chroma_radiance",
|
|
description="Allows setting advanced options for the Chroma Radiance model.",
|
|
inputs=[
|
|
io.Model.Input(id="model"),
|
|
io.Boolean.Input(
|
|
id="preserve_wrapper",
|
|
default=True,
|
|
tooltip="When enabled, will delegate to an existing model function wrapper if it exists. Generally should be left enabled.",
|
|
),
|
|
io.Float.Input(
|
|
id="start_sigma",
|
|
default=1.0,
|
|
min=0.0,
|
|
max=1.0,
|
|
tooltip="First sigma that these options will be in effect.",
|
|
),
|
|
io.Float.Input(
|
|
id="end_sigma",
|
|
default=0.0,
|
|
min=0.0,
|
|
max=1.0,
|
|
tooltip="Last sigma that these options will be in effect.",
|
|
),
|
|
io.Int.Input(
|
|
id="nerf_tile_size",
|
|
default=-1,
|
|
min=-1,
|
|
tooltip="Allows overriding the default NeRF tile size. -1 means use the default (32). 0 means use non-tiling mode (may require a lot of VRAM).",
|
|
),
|
|
],
|
|
outputs=[io.Model.Output()],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(
|
|
cls,
|
|
*,
|
|
model: io.Model.Type,
|
|
preserve_wrapper: bool,
|
|
start_sigma: float,
|
|
end_sigma: float,
|
|
nerf_tile_size: int,
|
|
) -> io.NodeOutput:
|
|
radiance_options = {}
|
|
if nerf_tile_size >= 0:
|
|
radiance_options["nerf_tile_size"] = nerf_tile_size
|
|
|
|
if not radiance_options:
|
|
return io.NodeOutput(model)
|
|
|
|
old_wrapper = model.model_options.get("model_function_wrapper")
|
|
|
|
def model_function_wrapper(apply_model: Callable, args: dict) -> torch.Tensor:
|
|
c = args["c"].copy()
|
|
sigma = args["timestep"].max().detach().cpu().item()
|
|
if end_sigma <= sigma <= start_sigma:
|
|
transformer_options = c.get("transformer_options", {}).copy()
|
|
transformer_options["chroma_radiance_options"] = radiance_options.copy()
|
|
c["transformer_options"] = transformer_options
|
|
if not (preserve_wrapper and old_wrapper):
|
|
return apply_model(args["input"], args["timestep"], **c)
|
|
return old_wrapper(apply_model, args | {"c": c})
|
|
|
|
model = model.clone()
|
|
model.set_model_unet_function_wrapper(model_function_wrapper)
|
|
return io.NodeOutput(model)
|
|
|
|
|
|
class ChromaRadianceExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
|
return [
|
|
EmptyChromaRadianceLatentImage,
|
|
ChromaRadianceOptions,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> ChromaRadianceExtension:
|
|
return ChromaRadianceExtension()
|