175 lines
8.1 KiB
Python

from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.llama
import comfy.model_management
from transformers import T5TokenizerFast, LlamaTokenizerFast
import torch
import os
import json
import base64
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class FluxTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.clip_l.untokenize(token_weight_pair)
def state_dict(self):
return {}
class FluxClipModel(torch.nn.Module):
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
super().__init__()
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5])
def set_clip_options(self, options):
self.clip_l.set_clip_options(options)
self.t5xxl.set_clip_options(options)
def reset_clip_options(self):
self.clip_l.reset_clip_options()
self.t5xxl.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return t5_out, l_pooled
def load_sd(self, sd):
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
else:
return self.t5xxl.load_sd(sd)
def flux_clip(dtype_t5=None, t5_quantization_metadata=None):
class FluxClipModel_(FluxClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
return FluxClipModel_
def load_mistral_tokenizer(data):
if torch.is_tensor(data):
data = data.numpy().tobytes()
try:
from transformers.integrations.mistral import MistralConverter
except ModuleNotFoundError:
from transformers.models.pixtral.convert_pixtral_weights_to_hf import MistralConverter
mistral_vocab = json.loads(data)
special_tokens = {}
vocab = {}
max_vocab = mistral_vocab["config"]["default_vocab_size"]
max_vocab -= len(mistral_vocab["special_tokens"])
for w in mistral_vocab["vocab"]:
r = w["rank"]
if r >= max_vocab:
continue
vocab[base64.b64decode(w["token_bytes"])] = r
for w in mistral_vocab["special_tokens"]:
if "token_bytes" in w:
special_tokens[base64.b64decode(w["token_bytes"])] = w["rank"]
else:
special_tokens[w["token_str"]] = w["rank"]
all_special = []
for v in special_tokens:
all_special.append(v)
special_tokens.update(vocab)
vocab = special_tokens
return {"tokenizer_object": MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(), "legacy": False}
class MistralTokenizerClass:
@staticmethod
def from_pretrained(path, **kwargs):
return LlamaTokenizerFast(**kwargs)
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.tekken_data = tokenizer_data.get("tekken_model", None)
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
def state_dict(self):
return {"tekken_model": self.tekken_data}
class Flux2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="mistral3_24b", tokenizer=Mistral3Tokenizer)
self.llama_template = '[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]{}[/INST]'
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class Mistral3_24BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer=[10, 20, 30], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
textmodel_json_config = {}
num_layers = model_options.get("num_layers", None)
if num_layers is not None:
textmodel_json_config["num_hidden_layers"] = num_layers
if num_layers < 40:
textmodel_json_config["final_norm"] = False
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 1, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Mistral3Small24B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Flux2TEModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, name="mistral3_24b", clip_model=Mistral3_24BModel):
super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options)
def encode_token_weights(self, token_weight_pairs):
out, pooled, extra = super().encode_token_weights(token_weight_pairs)
out = torch.stack((out[:, 0], out[:, 1], out[:, 2]), dim=1)
out = out.movedim(1, 2)
out = out.reshape(out.shape[0], out.shape[1], -1)
return out, pooled, extra
def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
class Flux2TEModel_(Flux2TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if dtype_llama is not None:
dtype = dtype_llama
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
if pruned:
model_options = model_options.copy()
model_options["num_layers"] = 30
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Flux2TEModel_