ComfyUI/comfy_extras/nodes_audio.py
2025-12-06 10:09:44 -08:00

627 lines
21 KiB
Python

from __future__ import annotations
import av
import torchaudio
import torch
import comfy.model_management
import folder_paths
import os
import hashlib
import node_helpers
import logging
from typing_extensions import override
from comfy_api.latest import ComfyExtension, IO, UI
class EmptyLatentAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="EmptyLatentAudio",
display_name="Empty Latent Audio",
category="latent/audio",
inputs=[
IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
IO.Int.Input(
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[IO.Latent.Output()],
)
@classmethod
def execute(cls, seconds, batch_size) -> IO.NodeOutput:
length = round((seconds * 44100 / 2048) / 2) * 2
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
return IO.NodeOutput({"samples":latent, "type": "audio"})
generate = execute # TODO: remove
class ConditioningStableAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ConditioningStableAudio",
category="conditioning",
inputs=[
IO.Conditioning.Input("positive"),
IO.Conditioning.Input("negative"),
IO.Float.Input("seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1),
IO.Float.Input("seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1),
],
outputs=[
IO.Conditioning.Output(display_name="positive"),
IO.Conditioning.Output(display_name="negative"),
],
)
@classmethod
def execute(cls, positive, negative, seconds_start, seconds_total) -> IO.NodeOutput:
positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total})
negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total})
return IO.NodeOutput(positive, negative)
append = execute # TODO: remove
class VAEEncodeAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="VAEEncodeAudio",
display_name="VAE Encode Audio",
category="latent/audio",
inputs=[
IO.Audio.Input("audio"),
IO.Vae.Input("vae"),
],
outputs=[IO.Latent.Output()],
)
@classmethod
def execute(cls, vae, audio) -> IO.NodeOutput:
sample_rate = audio["sample_rate"]
if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
else:
waveform = audio["waveform"]
t = vae.encode(waveform.movedim(1, -1))
return IO.NodeOutput({"samples":t})
encode = execute # TODO: remove
class VAEDecodeAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="VAEDecodeAudio",
display_name="VAE Decode Audio",
category="latent/audio",
inputs=[
IO.Latent.Input("samples"),
IO.Vae.Input("vae"),
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, vae, samples) -> IO.NodeOutput:
audio = vae.decode(samples["samples"]).movedim(-1, 1)
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
return IO.NodeOutput({"waveform": audio, "sample_rate": 44100})
decode = execute # TODO: remove
class SaveAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="SaveAudio",
display_name="Save Audio (FLAC)",
category="audio",
inputs=[
IO.Audio.Input("audio"),
IO.String.Input("filename_prefix", default="audio/ComfyUI"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> IO.NodeOutput:
return IO.NodeOutput(
ui=UI.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format)
)
save_flac = execute # TODO: remove
class SaveAudioMP3(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="SaveAudioMP3",
display_name="Save Audio (MP3)",
category="audio",
inputs=[
IO.Audio.Input("audio"),
IO.String.Input("filename_prefix", default="audio/ComfyUI"),
IO.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="128k") -> IO.NodeOutput:
return IO.NodeOutput(
ui=UI.AudioSaveHelper.get_save_audio_ui(
audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality
)
)
save_mp3 = execute # TODO: remove
class SaveAudioOpus(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="SaveAudioOpus",
display_name="Save Audio (Opus)",
category="audio",
inputs=[
IO.Audio.Input("audio"),
IO.String.Input("filename_prefix", default="audio/ComfyUI"),
IO.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="V3") -> IO.NodeOutput:
return IO.NodeOutput(
ui=UI.AudioSaveHelper.get_save_audio_ui(
audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality
)
)
save_opus = execute # TODO: remove
class PreviewAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="PreviewAudio",
display_name="Preview Audio",
category="audio",
inputs=[
IO.Audio.Input("audio"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, audio) -> IO.NodeOutput:
return IO.NodeOutput(ui=UI.PreviewAudio(audio, cls=cls))
save_flac = execute # TODO: remove
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to float 32 bits PCM format."""
if wav.dtype.is_floating_point:
return wav
elif wav.dtype == torch.int16:
return wav.float() / (2 ** 15)
elif wav.dtype == torch.int32:
return wav.float() / (2 ** 31)
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
def load(filepath: str) -> tuple[torch.Tensor, int]:
with av.open(filepath) as af:
if not af.streams.audio:
raise ValueError("No audio stream found in the file.")
stream = af.streams.audio[0]
sr = stream.codec_context.sample_rate
n_channels = stream.channels
frames = []
length = 0
for frame in af.decode(streams=stream.index):
buf = torch.from_numpy(frame.to_ndarray())
if buf.shape[0] != n_channels:
buf = buf.view(-1, n_channels).t()
frames.append(buf)
length += buf.shape[1]
if not frames:
raise ValueError("No audio frames decoded.")
wav = torch.cat(frames, dim=1)
wav = f32_pcm(wav)
return wav, sr
class LoadAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
input_dir = folder_paths.get_input_directory()
files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
return IO.Schema(
node_id="LoadAudio",
display_name="Load Audio",
category="audio",
inputs=[
IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)),
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, audio) -> IO.NodeOutput:
audio_path = folder_paths.get_annotated_filepath(audio)
waveform, sample_rate = load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return IO.NodeOutput(audio)
@classmethod
def fingerprint_inputs(cls, audio):
image_path = folder_paths.get_annotated_filepath(audio)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def validate_inputs(cls, audio):
if not folder_paths.exists_annotated_filepath(audio):
return "Invalid audio file: {}".format(audio)
return True
load = execute # TODO: remove
class RecordAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="RecordAudio",
display_name="Record Audio",
category="audio",
inputs=[
IO.Custom("AUDIO_RECORD").Input("audio"),
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, audio) -> IO.NodeOutput:
audio_path = folder_paths.get_annotated_filepath(audio)
waveform, sample_rate = load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return IO.NodeOutput(audio)
load = execute # TODO: remove
class TrimAudioDuration(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TrimAudioDuration",
display_name="Trim Audio Duration",
description="Trim audio tensor into chosen time range.",
category="audio",
inputs=[
IO.Audio.Input("audio"),
IO.Float.Input(
"start_index",
default=0.0,
min=-0xffffffffffffffff,
max=0xffffffffffffffff,
step=0.01,
tooltip="Start time in seconds, can be negative to count from the end (supports sub-seconds).",
),
IO.Float.Input(
"duration",
default=60.0,
min=0.0,
step=0.01,
tooltip="Duration in seconds",
),
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, audio, start_index, duration) -> IO.NodeOutput:
waveform = audio["waveform"]
sample_rate = audio["sample_rate"]
audio_length = waveform.shape[-1]
if start_index < 0:
start_frame = audio_length + int(round(start_index * sample_rate))
else:
start_frame = int(round(start_index * sample_rate))
start_frame = max(0, min(start_frame, audio_length - 1))
end_frame = start_frame + int(round(duration * sample_rate))
end_frame = max(0, min(end_frame, audio_length))
if start_frame >= end_frame:
raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.")
return IO.NodeOutput({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate})
trim = execute # TODO: remove
class SplitAudioChannels(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="SplitAudioChannels",
display_name="Split Audio Channels",
description="Separates the audio into left and right channels.",
category="audio",
inputs=[
IO.Audio.Input("audio"),
],
outputs=[
IO.Audio.Output(display_name="left"),
IO.Audio.Output(display_name="right"),
],
)
@classmethod
def execute(cls, audio) -> IO.NodeOutput:
waveform = audio["waveform"]
sample_rate = audio["sample_rate"]
if waveform.shape[1] != 2:
raise ValueError("AudioSplit: Input audio has only one channel.")
left_channel = waveform[..., 0:1, :]
right_channel = waveform[..., 1:2, :]
return IO.NodeOutput({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate})
separate = execute # TODO: remove
def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2):
if sample_rate_1 != sample_rate_2:
if sample_rate_1 > sample_rate_2:
waveform_2 = torchaudio.functional.resample(waveform_2, sample_rate_2, sample_rate_1)
output_sample_rate = sample_rate_1
logging.info(f"Resampling audio2 from {sample_rate_2}Hz to {sample_rate_1}Hz for merging.")
else:
waveform_1 = torchaudio.functional.resample(waveform_1, sample_rate_1, sample_rate_2)
output_sample_rate = sample_rate_2
logging.info(f"Resampling audio1 from {sample_rate_1}Hz to {sample_rate_2}Hz for merging.")
else:
output_sample_rate = sample_rate_1
return waveform_1, waveform_2, output_sample_rate
class AudioConcat(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="AudioConcat",
display_name="Audio Concat",
description="Concatenates the audio1 to audio2 in the specified direction.",
category="audio",
inputs=[
IO.Audio.Input("audio1"),
IO.Audio.Input("audio2"),
IO.Combo.Input(
"direction",
options=['after', 'before'],
default="after",
tooltip="Whether to append audio2 after or before audio1.",
)
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, audio1, audio2, direction) -> IO.NodeOutput:
waveform_1 = audio1["waveform"]
waveform_2 = audio2["waveform"]
sample_rate_1 = audio1["sample_rate"]
sample_rate_2 = audio2["sample_rate"]
if waveform_1.shape[1] == 1:
waveform_1 = waveform_1.repeat(1, 2, 1)
logging.info("AudioConcat: Converted mono audio1 to stereo by duplicating the channel.")
if waveform_2.shape[1] == 1:
waveform_2 = waveform_2.repeat(1, 2, 1)
logging.info("AudioConcat: Converted mono audio2 to stereo by duplicating the channel.")
waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2)
if direction == 'after':
concatenated_audio = torch.cat((waveform_1, waveform_2), dim=2)
elif direction == 'before':
concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2)
return IO.NodeOutput({"waveform": concatenated_audio, "sample_rate": output_sample_rate})
concat = execute # TODO: remove
class AudioMerge(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="AudioMerge",
display_name="Audio Merge",
description="Combine two audio tracks by overlaying their waveforms.",
category="audio",
inputs=[
IO.Audio.Input("audio1"),
IO.Audio.Input("audio2"),
IO.Combo.Input(
"merge_method",
options=["add", "mean", "subtract", "multiply"],
tooltip="The method used to combine the audio waveforms.",
)
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, audio1, audio2, merge_method) -> IO.NodeOutput:
waveform_1 = audio1["waveform"]
waveform_2 = audio2["waveform"]
sample_rate_1 = audio1["sample_rate"]
sample_rate_2 = audio2["sample_rate"]
waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2)
length_1 = waveform_1.shape[-1]
length_2 = waveform_2.shape[-1]
if length_2 > length_1:
logging.info(f"AudioMerge: Trimming audio2 from {length_2} to {length_1} samples to match audio1 length.")
waveform_2 = waveform_2[..., :length_1]
elif length_2 < length_1:
logging.info(f"AudioMerge: Padding audio2 from {length_2} to {length_1} samples to match audio1 length.")
pad_shape = list(waveform_2.shape)
pad_shape[-1] = length_1 - length_2
pad_tensor = torch.zeros(pad_shape, dtype=waveform_2.dtype, device=waveform_2.device)
waveform_2 = torch.cat((waveform_2, pad_tensor), dim=-1)
if merge_method == "add":
waveform = waveform_1 + waveform_2
elif merge_method == "subtract":
waveform = waveform_1 - waveform_2
elif merge_method == "multiply":
waveform = waveform_1 * waveform_2
elif merge_method == "mean":
waveform = (waveform_1 + waveform_2) / 2
max_val = waveform.abs().max()
if max_val > 1.0:
waveform = waveform / max_val
return IO.NodeOutput({"waveform": waveform, "sample_rate": output_sample_rate})
merge = execute # TODO: remove
class AudioAdjustVolume(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="AudioAdjustVolume",
display_name="Audio Adjust Volume",
category="audio",
inputs=[
IO.Audio.Input("audio"),
IO.Int.Input(
"volume",
default=1,
min=-100,
max=100,
tooltip="Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc",
)
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, audio, volume) -> IO.NodeOutput:
if volume == 0:
return IO.NodeOutput(audio)
waveform = audio["waveform"]
sample_rate = audio["sample_rate"]
gain = 10 ** (volume / 20)
waveform = waveform * gain
return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate})
adjust_volume = execute # TODO: remove
class EmptyAudio(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="EmptyAudio",
display_name="Empty Audio",
category="audio",
inputs=[
IO.Float.Input(
"duration",
default=60.0,
min=0.0,
max=0xffffffffffffffff,
step=0.01,
tooltip="Duration of the empty audio clip in seconds",
),
IO.Int.Input(
"sample_rate",
default=44100,
tooltip="Sample rate of the empty audio clip.",
min=1,
max=192000,
),
IO.Int.Input(
"channels",
default=2,
min=1,
max=2,
tooltip="Number of audio channels (1 for mono, 2 for stereo).",
),
],
outputs=[IO.Audio.Output()],
)
@classmethod
def execute(cls, duration, sample_rate, channels) -> IO.NodeOutput:
num_samples = int(round(duration * sample_rate))
waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32)
return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate})
create_empty_audio = execute # TODO: remove
class AudioExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
EmptyLatentAudio,
VAEEncodeAudio,
VAEDecodeAudio,
SaveAudio,
SaveAudioMP3,
SaveAudioOpus,
LoadAudio,
PreviewAudio,
ConditioningStableAudio,
RecordAudio,
TrimAudioDuration,
SplitAudioChannels,
AudioConcat,
AudioMerge,
AudioAdjustVolume,
EmptyAudio,
]
async def comfy_entrypoint() -> AudioExtension:
return AudioExtension()