mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 22:14:34 +08:00
* mp: only count the offload cost of math once This was previously bundling the combined weight storage and computation cost * ops: put all post async transfer compute on the main stream Some models have massive weights that need either complex dequantization or lora patching. Don't do these patchings on the offload stream, instead do them on the main stream to syncrhonize the potentially large vram spikes for these compute processes. This avoids having to assume a worst case scenario of multiple offload streams all spiking VRAM is parallel with whatever the main stream is doing.
705 lines
29 KiB
Python
705 lines
29 KiB
Python
"""
|
|
This file is part of ComfyUI.
|
|
Copyright (C) 2024 Stability AI
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
"""
|
|
|
|
import torch
|
|
import logging
|
|
import comfy.model_management
|
|
from comfy.cli_args import args, PerformanceFeature
|
|
import comfy.float
|
|
import comfy.rmsnorm
|
|
import contextlib
|
|
|
|
def run_every_op():
|
|
if torch.compiler.is_compiling():
|
|
return
|
|
|
|
comfy.model_management.throw_exception_if_processing_interrupted()
|
|
|
|
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
|
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
|
|
|
|
|
try:
|
|
if torch.cuda.is_available() and comfy.model_management.WINDOWS:
|
|
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
import inspect
|
|
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
|
|
SDPA_BACKEND_PRIORITY = [
|
|
SDPBackend.FLASH_ATTENTION,
|
|
SDPBackend.EFFICIENT_ATTENTION,
|
|
SDPBackend.MATH,
|
|
]
|
|
|
|
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
|
|
|
|
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
|
|
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
|
|
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
|
|
else:
|
|
logging.warning("Torch version too old to set sdpa backend priority.")
|
|
except (ModuleNotFoundError, TypeError):
|
|
logging.warning("Could not set sdpa backend priority.")
|
|
|
|
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
|
|
try:
|
|
if comfy.model_management.is_nvidia():
|
|
cudnn_version = torch.backends.cudnn.version()
|
|
if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
|
|
#TODO: change upper bound version once it's fixed'
|
|
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
|
|
logging.info("working around nvidia conv3d memory bug.")
|
|
except:
|
|
pass
|
|
|
|
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
|
|
|
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
|
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
|
|
|
|
|
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
|
|
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
|
|
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
|
|
# will add async-offload support to your cast and improve performance.
|
|
if input is not None:
|
|
if dtype is None:
|
|
if isinstance(input, QuantizedTensor):
|
|
dtype = input._layout_params["orig_dtype"]
|
|
else:
|
|
dtype = input.dtype
|
|
if bias_dtype is None:
|
|
bias_dtype = dtype
|
|
if device is None:
|
|
device = input.device
|
|
|
|
if offloadable and (device != s.weight.device or
|
|
(s.bias is not None and device != s.bias.device)):
|
|
offload_stream = comfy.model_management.get_offload_stream(device)
|
|
else:
|
|
offload_stream = None
|
|
|
|
if offload_stream is not None:
|
|
wf_context = offload_stream
|
|
if hasattr(wf_context, "as_context"):
|
|
wf_context = wf_context.as_context(offload_stream)
|
|
else:
|
|
wf_context = contextlib.nullcontext()
|
|
|
|
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
|
|
|
weight_has_function = len(s.weight_function) > 0
|
|
bias_has_function = len(s.bias_function) > 0
|
|
|
|
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
|
|
|
|
bias = None
|
|
if s.bias is not None:
|
|
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
|
|
|
comfy.model_management.sync_stream(device, offload_stream)
|
|
|
|
bias_a = bias
|
|
weight_a = weight
|
|
|
|
if s.bias is not None:
|
|
for f in s.bias_function:
|
|
bias = f(bias)
|
|
|
|
if weight_has_function or weight.dtype != dtype:
|
|
weight = weight.to(dtype=dtype)
|
|
if isinstance(weight, QuantizedTensor):
|
|
weight = weight.dequantize()
|
|
for f in s.weight_function:
|
|
weight = f(weight)
|
|
|
|
if offloadable:
|
|
return weight, bias, (offload_stream, weight_a, bias_a)
|
|
else:
|
|
#Legacy function signature
|
|
return weight, bias
|
|
|
|
|
|
def uncast_bias_weight(s, weight, bias, offload_stream):
|
|
if offload_stream is None:
|
|
return
|
|
os, weight_a, bias_a = offload_stream
|
|
if os is None:
|
|
return
|
|
if weight_a is not None:
|
|
device = weight_a.device
|
|
else:
|
|
if bias_a is None:
|
|
return
|
|
device = bias_a.device
|
|
os.wait_stream(comfy.model_management.current_stream(device))
|
|
|
|
|
|
class CastWeightBiasOp:
|
|
comfy_cast_weights = False
|
|
weight_function = []
|
|
bias_function = []
|
|
|
|
class disable_weight_init:
|
|
class Linear(torch.nn.Linear, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = torch.nn.functional.linear(input, weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = self._conv_forward(input, weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = self._conv_forward(input, weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def _conv_forward(self, input, weight, bias, *args, **kwargs):
|
|
if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16):
|
|
out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True)
|
|
if bias is not None:
|
|
out += bias.reshape((1, -1) + (1,) * (out.ndim - 2))
|
|
return out
|
|
else:
|
|
return super()._conv_forward(input, weight, bias, *args, **kwargs)
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = self._conv_forward(input, weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
if self.weight is not None:
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
else:
|
|
weight = None
|
|
bias = None
|
|
offload_stream = None
|
|
x = torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
self.bias = None
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
if self.weight is not None:
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
else:
|
|
weight = None
|
|
bias = None
|
|
offload_stream = None
|
|
x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
|
|
# x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input, output_size=None):
|
|
num_spatial_dims = 2
|
|
output_padding = self._output_padding(
|
|
input, output_size, self.stride, self.padding, self.kernel_size,
|
|
num_spatial_dims, self.dilation)
|
|
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = torch.nn.functional.conv_transpose2d(
|
|
input, weight, bias, self.stride, self.padding,
|
|
output_padding, self.groups, self.dilation)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input, output_size=None):
|
|
num_spatial_dims = 1
|
|
output_padding = self._output_padding(
|
|
input, output_size, self.stride, self.padding, self.kernel_size,
|
|
num_spatial_dims, self.dilation)
|
|
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = torch.nn.functional.conv_transpose1d(
|
|
input, weight, bias, self.stride, self.padding,
|
|
output_padding, self.groups, self.dilation)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
class Embedding(torch.nn.Embedding, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
self.bias = None
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input, out_dtype=None):
|
|
output_dtype = out_dtype
|
|
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
|
out_dtype = None
|
|
weight, bias, offload_stream = cast_bias_weight(self, device=input.device, dtype=out_dtype, offloadable=True)
|
|
x = torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
|
|
def forward(self, *args, **kwargs):
|
|
run_every_op()
|
|
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
if "out_dtype" in kwargs:
|
|
kwargs.pop("out_dtype")
|
|
return super().forward(*args, **kwargs)
|
|
|
|
@classmethod
|
|
def conv_nd(s, dims, *args, **kwargs):
|
|
if dims == 2:
|
|
return s.Conv2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return s.Conv3d(*args, **kwargs)
|
|
else:
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|
|
|
|
class manual_cast(disable_weight_init):
|
|
class Linear(disable_weight_init.Linear):
|
|
comfy_cast_weights = True
|
|
|
|
class Conv1d(disable_weight_init.Conv1d):
|
|
comfy_cast_weights = True
|
|
|
|
class Conv2d(disable_weight_init.Conv2d):
|
|
comfy_cast_weights = True
|
|
|
|
class Conv3d(disable_weight_init.Conv3d):
|
|
comfy_cast_weights = True
|
|
|
|
class GroupNorm(disable_weight_init.GroupNorm):
|
|
comfy_cast_weights = True
|
|
|
|
class LayerNorm(disable_weight_init.LayerNorm):
|
|
comfy_cast_weights = True
|
|
|
|
class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
|
|
comfy_cast_weights = True
|
|
|
|
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
|
comfy_cast_weights = True
|
|
|
|
class RMSNorm(disable_weight_init.RMSNorm):
|
|
comfy_cast_weights = True
|
|
|
|
class Embedding(disable_weight_init.Embedding):
|
|
comfy_cast_weights = True
|
|
|
|
|
|
def fp8_linear(self, input):
|
|
"""
|
|
Legacy FP8 linear function for backward compatibility.
|
|
Uses QuantizedTensor subclass for dispatch.
|
|
"""
|
|
dtype = self.weight.dtype
|
|
if dtype not in [torch.float8_e4m3fn]:
|
|
return None
|
|
|
|
input_dtype = input.dtype
|
|
|
|
if input.ndim == 3 or input.ndim == 2:
|
|
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
|
|
|
|
scale_weight = self.scale_weight
|
|
scale_input = self.scale_input
|
|
if scale_weight is None:
|
|
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
|
|
else:
|
|
scale_weight = scale_weight.to(input.device)
|
|
|
|
if scale_input is None:
|
|
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
|
input = torch.clamp(input, min=-448, max=448, out=input)
|
|
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
|
|
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
|
|
else:
|
|
scale_input = scale_input.to(input.device)
|
|
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
|
|
|
|
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
|
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
|
layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype}
|
|
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
|
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
|
|
|
uncast_bias_weight(self, w, bias, offload_stream)
|
|
return o
|
|
|
|
return None
|
|
|
|
class fp8_ops(manual_cast):
|
|
class Linear(manual_cast.Linear):
|
|
def reset_parameters(self):
|
|
self.scale_weight = None
|
|
self.scale_input = None
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
if not self.training:
|
|
try:
|
|
out = fp8_linear(self, input)
|
|
if out is not None:
|
|
return out
|
|
except Exception as e:
|
|
logging.info("Exception during fp8 op: {}".format(e))
|
|
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = torch.nn.functional.linear(input, weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
|
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
|
|
class scaled_fp8_op(manual_cast):
|
|
class Linear(manual_cast.Linear):
|
|
def __init__(self, *args, **kwargs):
|
|
if override_dtype is not None:
|
|
kwargs['dtype'] = override_dtype
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def reset_parameters(self):
|
|
if not hasattr(self, 'scale_weight'):
|
|
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
|
|
|
if not scale_input:
|
|
self.scale_input = None
|
|
|
|
if not hasattr(self, 'scale_input'):
|
|
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
if fp8_matrix_mult:
|
|
out = fp8_linear(self, input)
|
|
if out is not None:
|
|
return out
|
|
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
|
|
if weight.numel() < input.numel(): #TODO: optimize
|
|
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
|
else:
|
|
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def convert_weight(self, weight, inplace=False, **kwargs):
|
|
if inplace:
|
|
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
|
return weight
|
|
else:
|
|
return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32)
|
|
|
|
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
|
|
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
|
|
if return_weight:
|
|
return weight
|
|
if inplace_update:
|
|
self.weight.data.copy_(weight)
|
|
else:
|
|
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
|
|
|
return scaled_fp8_op
|
|
|
|
CUBLAS_IS_AVAILABLE = False
|
|
try:
|
|
from cublas_ops import CublasLinear
|
|
CUBLAS_IS_AVAILABLE = True
|
|
except ImportError:
|
|
pass
|
|
|
|
if CUBLAS_IS_AVAILABLE:
|
|
class cublas_ops(disable_weight_init):
|
|
class Linear(CublasLinear, disable_weight_init.Linear):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
return super().forward(input)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return super().forward(*args, **kwargs)
|
|
|
|
|
|
# ==============================================================================
|
|
# Mixed Precision Operations
|
|
# ==============================================================================
|
|
from .quant_ops import QuantizedTensor, QUANT_ALGOS
|
|
|
|
|
|
def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
|
|
class MixedPrecisionOps(manual_cast):
|
|
_layer_quant_config = layer_quant_config
|
|
_compute_dtype = compute_dtype
|
|
_full_precision_mm = full_precision_mm
|
|
|
|
class Linear(torch.nn.Module, CastWeightBiasOp):
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
device=None,
|
|
dtype=None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
|
|
# self.factory_kwargs = {"device": device, "dtype": dtype}
|
|
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
if bias:
|
|
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
|
|
else:
|
|
self.register_parameter("bias", None)
|
|
|
|
self.tensor_class = None
|
|
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
|
|
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
|
|
strict, missing_keys, unexpected_keys, error_msgs):
|
|
|
|
device = self.factory_kwargs["device"]
|
|
layer_name = prefix.rstrip('.')
|
|
weight_key = f"{prefix}weight"
|
|
weight = state_dict.pop(weight_key, None)
|
|
if weight is None:
|
|
raise ValueError(f"Missing weight for layer {layer_name}")
|
|
|
|
manually_loaded_keys = [weight_key]
|
|
|
|
if layer_name not in MixedPrecisionOps._layer_quant_config:
|
|
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
|
|
else:
|
|
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
|
|
if quant_format is None:
|
|
raise ValueError(f"Unknown quantization format for layer {layer_name}")
|
|
|
|
qconfig = QUANT_ALGOS[quant_format]
|
|
self.layout_type = qconfig["comfy_tensor_layout"]
|
|
|
|
weight_scale_key = f"{prefix}weight_scale"
|
|
layout_params = {
|
|
'scale': state_dict.pop(weight_scale_key, None),
|
|
'orig_dtype': MixedPrecisionOps._compute_dtype,
|
|
'block_size': qconfig.get("group_size", None),
|
|
}
|
|
if layout_params['scale'] is not None:
|
|
manually_loaded_keys.append(weight_scale_key)
|
|
|
|
self.weight = torch.nn.Parameter(
|
|
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
|
|
requires_grad=False
|
|
)
|
|
|
|
for param_name in qconfig["parameters"]:
|
|
param_key = f"{prefix}{param_name}"
|
|
_v = state_dict.pop(param_key, None)
|
|
if _v is None:
|
|
continue
|
|
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
|
|
manually_loaded_keys.append(param_key)
|
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
for key in manually_loaded_keys:
|
|
if key in missing_keys:
|
|
missing_keys.remove(key)
|
|
|
|
def _forward(self, input, weight, bias):
|
|
return torch.nn.functional.linear(input, weight, bias)
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
|
|
x = self._forward(input, weight, bias)
|
|
uncast_bias_weight(self, weight, bias, offload_stream)
|
|
return x
|
|
|
|
def forward(self, input, *args, **kwargs):
|
|
run_every_op()
|
|
|
|
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
|
return self.forward_comfy_cast_weights(input, *args, **kwargs)
|
|
if (getattr(self, 'layout_type', None) is not None and
|
|
getattr(self, 'input_scale', None) is not None and
|
|
not isinstance(input, QuantizedTensor)):
|
|
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
|
|
return self._forward(input, self.weight, self.bias)
|
|
|
|
def convert_weight(self, weight, inplace=False, **kwargs):
|
|
if isinstance(weight, QuantizedTensor):
|
|
return weight.dequantize()
|
|
else:
|
|
return weight
|
|
|
|
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
|
|
if getattr(self, 'layout_type', None) is not None:
|
|
weight = QuantizedTensor.from_float(weight, self.layout_type, scale=None, dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True)
|
|
else:
|
|
weight = weight.to(self.weight.dtype)
|
|
if return_weight:
|
|
return weight
|
|
|
|
assert inplace_update is False # TODO: eventually remove the inplace_update stuff
|
|
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
|
|
|
return MixedPrecisionOps
|
|
|
|
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
|
|
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
|
|
|
|
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
|
|
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
|
|
return mixed_precision_ops(model_config.layer_quant_config, compute_dtype, full_precision_mm=not fp8_compute)
|
|
|
|
if scaled_fp8 is not None:
|
|
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
|
|
|
|
if (
|
|
fp8_compute and
|
|
(fp8_optimizations or PerformanceFeature.Fp8MatrixMultiplication in args.fast) and
|
|
not disable_fast_fp8
|
|
):
|
|
return fp8_ops
|
|
|
|
if (
|
|
PerformanceFeature.CublasOps in args.fast and
|
|
CUBLAS_IS_AVAILABLE and
|
|
weight_dtype == torch.float16 and
|
|
(compute_dtype == torch.float16 or compute_dtype is None)
|
|
):
|
|
logging.info("Using cublas ops")
|
|
return cublas_ops
|
|
|
|
if compute_dtype is None or weight_dtype == compute_dtype:
|
|
return disable_weight_init
|
|
|
|
return manual_cast
|