mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 22:14:34 +08:00
* execution: fold in dependency aware caching This makes --cache-none compatiable with lazy and expanded subgraphs. Currently the --cache-none option is powered by the DependencyAwareCache. The cache attempts to maintain a parallel copy of the execution list data structure, however it is only setup once at the start of execution and does not get meaninigful updates to the execution list. This causes multiple problems when --cache-none is used with lazy and expanded subgraphs as the DAC does not accurately update its copy of the execution data structure. DAC has an attempt to handle subgraphs ensure_subcache however this does not accurately connect to nodes outside the subgraph. The current semantics of DAC are to free a node ASAP after the dependent nodes are executed. This means that if a subgraph refs such a node it will be requed and re-executed by the execution_list but DAC wont see it in its to-free lists anymore and leak memory. Rather than try and cover all the cases where the execution list changes from inside the cache, move the while problem to the executor which maintains an always up-to-date copy of the wanted data-structure. The executor now has a fast-moving run-local cache of its own. Each _to node has its own mini cache, and the cache is unconditionally primed at the time of add_strong_link. add_strong_link is called for all of static workflows, lazy links and expanded subgraphs so its the singular source of truth for output dependendencies. In the case of a cache-hit, the executor cache will hold the non-none value (it will respect updates if they happen somehow as well). In the case of a cache-miss, the executor caches a None and will wait for a notification to update the value when the node completes. When a node completes execution, it simply releases its mini-cache and in turn its strong refs on its direct anscestor outputs, allowing for ASAP freeing (same as the DependencyAwareCache but a little more automatic). This now allows for re-implementation of --cache-none with no cache at all. The dependency aware cache was also observing the dependency sematics for the objects and UI cache which is not accurate (this entire logic was always outputs specific). This also prepares for more complex caching strategies (such as RAM pressure based caching), where a cache can implement any freeing strategy completely independently of the DepedancyAwareness requirement. * main: re-implement --cache-none as no cache at all The execution list now tracks the dependency aware caching more correctly that the DependancyAwareCache. Change it to a cache that does nothing. * test_execution: add --cache-none to the test suite --cache-none is now expected to work universally. Run it through the full unit test suite. Propagate the server parameterization for whether or not the server is capabale of caching, so that the minority of tests that specifically check for cache hits can if else. Hard assert NOT caching in the else to give some coverage of --cache-none expected behaviour to not acutally cache.
880 lines
41 KiB
Python
880 lines
41 KiB
Python
from io import BytesIO
|
|
import numpy
|
|
from PIL import Image
|
|
import pytest
|
|
from pytest import fixture
|
|
import time
|
|
import torch
|
|
from typing import Union, Dict
|
|
import json
|
|
import subprocess
|
|
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
|
import uuid
|
|
import urllib.request
|
|
import urllib.parse
|
|
import urllib.error
|
|
from comfy_execution.graph_utils import GraphBuilder, Node
|
|
|
|
def run_warmup(client, prefix="warmup"):
|
|
"""Run a simple workflow to warm up the server."""
|
|
warmup_g = GraphBuilder(prefix=prefix)
|
|
warmup_image = warmup_g.node("StubImage", content="BLACK", height=32, width=32, batch_size=1)
|
|
warmup_g.node("PreviewImage", images=warmup_image.out(0))
|
|
client.run(warmup_g)
|
|
|
|
class RunResult:
|
|
def __init__(self, prompt_id: str):
|
|
self.outputs: Dict[str,Dict] = {}
|
|
self.runs: Dict[str,bool] = {}
|
|
self.cached: Dict[str,bool] = {}
|
|
self.prompt_id: str = prompt_id
|
|
|
|
def get_output(self, node: Node):
|
|
return self.outputs.get(node.id, None)
|
|
|
|
def did_run(self, node: Node):
|
|
return self.runs.get(node.id, False)
|
|
|
|
def was_cached(self, node: Node):
|
|
return self.cached.get(node.id, False)
|
|
|
|
def was_executed(self, node: Node):
|
|
"""Returns True if node was either run or cached"""
|
|
return self.did_run(node) or self.was_cached(node)
|
|
|
|
def get_images(self, node: Node):
|
|
output = self.get_output(node)
|
|
if output is None:
|
|
return []
|
|
return output.get('image_objects', [])
|
|
|
|
def get_prompt_id(self):
|
|
return self.prompt_id
|
|
|
|
class ComfyClient:
|
|
def __init__(self):
|
|
self.test_name = ""
|
|
|
|
def connect(self,
|
|
listen:str = '127.0.0.1',
|
|
port:Union[str,int] = 8188,
|
|
client_id: str = str(uuid.uuid4())
|
|
):
|
|
self.client_id = client_id
|
|
self.server_address = f"{listen}:{port}"
|
|
ws = websocket.WebSocket()
|
|
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
|
|
self.ws = ws
|
|
|
|
def queue_prompt(self, prompt, partial_execution_targets=None):
|
|
p = {"prompt": prompt, "client_id": self.client_id}
|
|
if partial_execution_targets is not None:
|
|
p["partial_execution_targets"] = partial_execution_targets
|
|
data = json.dumps(p).encode('utf-8')
|
|
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
|
|
return json.loads(urllib.request.urlopen(req).read())
|
|
|
|
def get_image(self, filename, subfolder, folder_type):
|
|
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
|
url_values = urllib.parse.urlencode(data)
|
|
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
|
|
return response.read()
|
|
|
|
def get_history(self, prompt_id):
|
|
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
|
|
return json.loads(response.read())
|
|
|
|
def get_all_history(self, max_items=None, offset=None):
|
|
url = "http://{}/history".format(self.server_address)
|
|
params = {}
|
|
if max_items is not None:
|
|
params["max_items"] = max_items
|
|
if offset is not None:
|
|
params["offset"] = offset
|
|
|
|
if params:
|
|
url_values = urllib.parse.urlencode(params)
|
|
url = "{}?{}".format(url, url_values)
|
|
|
|
with urllib.request.urlopen(url) as response:
|
|
return json.loads(response.read())
|
|
|
|
def set_test_name(self, name):
|
|
self.test_name = name
|
|
|
|
def run(self, graph, partial_execution_targets=None):
|
|
prompt = graph.finalize()
|
|
for node in graph.nodes.values():
|
|
if node.class_type == 'SaveImage':
|
|
node.inputs['filename_prefix'] = self.test_name
|
|
|
|
prompt_id = self.queue_prompt(prompt, partial_execution_targets)['prompt_id']
|
|
result = RunResult(prompt_id)
|
|
while True:
|
|
out = self.ws.recv()
|
|
if isinstance(out, str):
|
|
message = json.loads(out)
|
|
if message['type'] == 'executing':
|
|
data = message['data']
|
|
if data['prompt_id'] != prompt_id:
|
|
continue
|
|
if data['node'] is None:
|
|
break
|
|
result.runs[data['node']] = True
|
|
elif message['type'] == 'execution_error':
|
|
raise Exception(message['data'])
|
|
elif message['type'] == 'execution_cached':
|
|
if message['data']['prompt_id'] == prompt_id:
|
|
cached_nodes = message['data'].get('nodes', [])
|
|
for node_id in cached_nodes:
|
|
result.cached[node_id] = True
|
|
|
|
history = self.get_history(prompt_id)[prompt_id]
|
|
for node_id in history['outputs']:
|
|
node_output = history['outputs'][node_id]
|
|
result.outputs[node_id] = node_output
|
|
images_output = []
|
|
if 'images' in node_output:
|
|
for image in node_output['images']:
|
|
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
|
image_obj = Image.open(BytesIO(image_data))
|
|
images_output.append(image_obj)
|
|
node_output['image_objects'] = images_output
|
|
|
|
return result
|
|
|
|
#
|
|
# Loop through these variables
|
|
#
|
|
@pytest.mark.execution
|
|
class TestExecution:
|
|
#
|
|
# Initialize server and client
|
|
#
|
|
@fixture(scope="class", autouse=True, params=[
|
|
{ "extra_args" : [], "should_cache_results" : True },
|
|
{ "extra_args" : ["--cache-lru", 0], "should_cache_results" : True },
|
|
{ "extra_args" : ["--cache-lru", 100], "should_cache_results" : True },
|
|
{ "extra_args" : ["--cache-none"], "should_cache_results" : False },
|
|
])
|
|
def server(self, args_pytest, request):
|
|
# Start server
|
|
pargs = [
|
|
'python','main.py',
|
|
'--output-directory', args_pytest["output_dir"],
|
|
'--listen', args_pytest["listen"],
|
|
'--port', str(args_pytest["port"]),
|
|
'--extra-model-paths-config', 'tests/execution/extra_model_paths.yaml',
|
|
'--cpu',
|
|
]
|
|
pargs += [ str(param) for param in request.param["extra_args"] ]
|
|
print("Running server with args:", pargs) # noqa: T201
|
|
p = subprocess.Popen(pargs)
|
|
yield request.param
|
|
p.kill()
|
|
torch.cuda.empty_cache()
|
|
|
|
def start_client(self, listen:str, port:int):
|
|
# Start client
|
|
comfy_client = ComfyClient()
|
|
# Connect to server (with retries)
|
|
n_tries = 5
|
|
for i in range(n_tries):
|
|
time.sleep(4)
|
|
try:
|
|
comfy_client.connect(listen=listen, port=port)
|
|
except ConnectionRefusedError as e:
|
|
print(e) # noqa: T201
|
|
print(f"({i+1}/{n_tries}) Retrying...") # noqa: T201
|
|
else:
|
|
break
|
|
return comfy_client
|
|
|
|
@fixture(scope="class", autouse=True)
|
|
def shared_client(self, args_pytest, server):
|
|
client = self.start_client(args_pytest["listen"], args_pytest["port"])
|
|
yield client
|
|
del client
|
|
torch.cuda.empty_cache()
|
|
|
|
@fixture
|
|
def client(self, shared_client, request):
|
|
shared_client.set_test_name(f"execution[{request.node.name}]")
|
|
yield shared_client
|
|
|
|
@fixture
|
|
def builder(self, request):
|
|
yield GraphBuilder(prefix=request.node.name)
|
|
|
|
def test_lazy_input(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
output = g.node("SaveImage", images=lazy_mix.out(0))
|
|
result = client.run(g)
|
|
|
|
result_image = result.get_images(output)[0]
|
|
assert numpy.array(result_image).any() == 0, "Image should be black"
|
|
assert result.did_run(input1)
|
|
assert not result.did_run(input2)
|
|
assert result.did_run(mask)
|
|
assert result.did_run(lazy_mix)
|
|
|
|
def test_full_cache(self, client: ComfyClient, builder: GraphBuilder, server):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix.out(0))
|
|
|
|
client.run(g)
|
|
result2 = client.run(g)
|
|
for node_id, node in g.nodes.items():
|
|
if server["should_cache_results"]:
|
|
assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached"
|
|
else:
|
|
assert result2.did_run(node), f"Node {node_id} was cached, but should have been run"
|
|
|
|
def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder, server):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix.out(0))
|
|
|
|
client.run(g)
|
|
mask.inputs['value'] = 0.4
|
|
result2 = client.run(g)
|
|
if server["should_cache_results"]:
|
|
assert not result2.did_run(input1), "Input1 should have been cached"
|
|
assert not result2.did_run(input2), "Input2 should have been cached"
|
|
else:
|
|
assert result2.did_run(input1), "Input1 should have been rerun"
|
|
assert result2.did_run(input2), "Input2 should have been rerun"
|
|
|
|
def test_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
# Different size of the two images
|
|
input2 = g.node("StubImage", content="NOISE", height=256, width=256, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix.out(0))
|
|
|
|
try:
|
|
client.run(g)
|
|
assert False, "Should have raised an error"
|
|
except Exception as e:
|
|
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
|
|
|
|
@pytest.mark.parametrize("test_value, expect_error", [
|
|
(5, True),
|
|
("foo", True),
|
|
(5.0, False),
|
|
])
|
|
def test_validation_error_literal(self, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
validation1 = g.node("TestCustomValidation1", input1=test_value, input2=3.0)
|
|
g.node("SaveImage", images=validation1.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value", [
|
|
("StubInt", 5),
|
|
("StubMask", 5.0)
|
|
])
|
|
def test_validation_error_edge1(self, test_type, test_value, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation1 = g.node("TestCustomValidation1", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation1.out(0))
|
|
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
|
("StubInt", 5, True),
|
|
("StubFloat", 5.0, False)
|
|
])
|
|
def test_validation_error_edge2(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation2 = g.node("TestCustomValidation2", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation2.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
|
("StubInt", 5, True),
|
|
("StubFloat", 5.0, False)
|
|
])
|
|
def test_validation_error_edge3(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation3 = g.node("TestCustomValidation3", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation3.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
|
("StubInt", 5, True),
|
|
("StubFloat", 5.0, False)
|
|
])
|
|
def test_validation_error_edge4(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation4 = g.node("TestCustomValidation4", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation4.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_value1, test_value2, expect_error", [
|
|
(0.0, 0.5, False),
|
|
(0.0, 5.0, False),
|
|
(0.0, 7.0, True)
|
|
])
|
|
def test_validation_error_kwargs(self, test_value1, test_value2, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
validation5 = g.node("TestCustomValidation5", input1=test_value1, input2=test_value2)
|
|
g.node("SaveImage", images=validation5.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
def test_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), mask=mask.out(0))
|
|
lazy_mix2 = g.node("TestLazyMixImages", image1=lazy_mix1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix2.out(0))
|
|
|
|
# When the cycle exists on initial submission, it should raise a validation error
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
|
|
def test_dynamic_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
generator = g.node("TestDynamicDependencyCycle", input1=input1.out(0), input2=input2.out(0))
|
|
g.node("SaveImage", images=generator.out(0))
|
|
|
|
# When the cycle is in a graph that is generated dynamically, it should raise a runtime error
|
|
try:
|
|
client.run(g)
|
|
assert False, "Should have raised an error"
|
|
except Exception as e:
|
|
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
|
|
assert e.args[0]['node_id'] == generator.id, "Error should have been on the generator node"
|
|
|
|
def test_missing_node_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
|
|
input3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
mix2 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input3.out(0), mask=mask.out(0))
|
|
# We have multiple outputs. The first is invalid, but the second is valid
|
|
g.node("SaveImage", images=mix1.out(0))
|
|
g.node("SaveImage", images=mix2.out(0))
|
|
g.remove_node("removeme")
|
|
|
|
client.run(g)
|
|
|
|
# Add back in the missing node to make sure the error doesn't break the server
|
|
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
|
|
client.run(g)
|
|
|
|
def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder, server):
|
|
g = builder
|
|
# Creating the nodes in this specific order previously caused a bug
|
|
save = g.node("SaveImage")
|
|
is_changed = g.node("TestCustomIsChanged", should_change=False)
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
|
|
save.set_input('images', is_changed.out(0))
|
|
is_changed.set_input('image', input1.out(0))
|
|
|
|
result1 = client.run(g)
|
|
result2 = client.run(g)
|
|
is_changed.set_input('should_change', True)
|
|
result3 = client.run(g)
|
|
result4 = client.run(g)
|
|
assert result1.did_run(is_changed), "is_changed should have been run"
|
|
if server["should_cache_results"]:
|
|
assert not result2.did_run(is_changed), "is_changed should have been cached"
|
|
else:
|
|
assert result2.did_run(is_changed), "is_changed should have been re-run"
|
|
assert result3.did_run(is_changed), "is_changed should have been re-run"
|
|
assert result4.did_run(is_changed), "is_changed should not have been cached"
|
|
|
|
def test_undeclared_inputs(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
input3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input4 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=input2.out(0), input3=input3.out(0), input4=input4.out(0))
|
|
output = g.node("SaveImage", images=average.out(0))
|
|
|
|
result = client.run(g)
|
|
result_image = result.get_images(output)[0]
|
|
expected = 255 // 4
|
|
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
|
|
|
|
def test_for_loop(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
iterations = 4
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
is_changed = g.node("TestCustomIsChanged", should_change=True, image=input2.out(0))
|
|
for_open = g.node("TestForLoopOpen", remaining=iterations, initial_value1=is_changed.out(0))
|
|
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=for_open.out(2))
|
|
for_close = g.node("TestForLoopClose", flow_control=for_open.out(0), initial_value1=average.out(0))
|
|
output = g.node("SaveImage", images=for_close.out(0))
|
|
|
|
for iterations in range(1, 5):
|
|
for_open.set_input('remaining', iterations)
|
|
result = client.run(g)
|
|
result_image = result.get_images(output)[0]
|
|
expected = 255 // (2 ** iterations)
|
|
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
|
|
assert result.did_run(is_changed)
|
|
|
|
def test_mixed_expansion_returns(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
val_list = g.node("TestMakeListNode", value1=0.1, value2=0.2, value3=0.3)
|
|
mixed = g.node("TestMixedExpansionReturns", input1=val_list.out(0))
|
|
output_dynamic = g.node("SaveImage", images=mixed.out(0))
|
|
output_literal = g.node("SaveImage", images=mixed.out(1))
|
|
|
|
result = client.run(g)
|
|
images_dynamic = result.get_images(output_dynamic)
|
|
assert len(images_dynamic) == 3, "Should have 2 images"
|
|
assert numpy.array(images_dynamic[0]).min() == 25 and numpy.array(images_dynamic[0]).max() == 25, "First image should be 0.1"
|
|
assert numpy.array(images_dynamic[1]).min() == 51 and numpy.array(images_dynamic[1]).max() == 51, "Second image should be 0.2"
|
|
assert numpy.array(images_dynamic[2]).min() == 76 and numpy.array(images_dynamic[2]).max() == 76, "Third image should be 0.3"
|
|
|
|
images_literal = result.get_images(output_literal)
|
|
assert len(images_literal) == 3, "Should have 2 images"
|
|
for i in range(3):
|
|
assert numpy.array(images_literal[i]).min() == 255 and numpy.array(images_literal[i]).max() == 255, "All images should be white"
|
|
|
|
def test_mixed_lazy_results(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
val_list = g.node("TestMakeListNode", value1=0.0, value2=0.5, value3=1.0)
|
|
mask = g.node("StubMask", value=val_list.out(0), height=512, width=512, batch_size=1)
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
rebatch = g.node("RebatchImages", images=mix.out(0), batch_size=3)
|
|
output = g.node("SaveImage", images=rebatch.out(0))
|
|
|
|
result = client.run(g)
|
|
images = result.get_images(output)
|
|
assert len(images) == 3, "Should have 3 image"
|
|
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be 0.0"
|
|
assert numpy.array(images[1]).min() == 127 and numpy.array(images[1]).max() == 127, "Second image should be 0.5"
|
|
assert numpy.array(images[2]).min() == 255 and numpy.array(images[2]).max() == 255, "Third image should be 1.0"
|
|
|
|
def test_output_reuse(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
|
|
output1 = g.node("SaveImage", images=input1.out(0))
|
|
output2 = g.node("SaveImage", images=input1.out(0))
|
|
|
|
result = client.run(g)
|
|
images1 = result.get_images(output1)
|
|
images2 = result.get_images(output2)
|
|
assert len(images1) == 1, "Should have 1 image"
|
|
assert len(images2) == 1, "Should have 1 image"
|
|
|
|
# This tests that only constant outputs are used in the call to `IS_CHANGED`
|
|
def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder, server):
|
|
g = builder
|
|
input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1)
|
|
test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5)
|
|
|
|
output = g.node("PreviewImage", images=test_node.out(0))
|
|
|
|
result = client.run(g)
|
|
images = result.get_images(output)
|
|
assert len(images) == 1, "Should have 1 image"
|
|
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
|
|
|
|
result = client.run(g)
|
|
images = result.get_images(output)
|
|
assert len(images) == 1, "Should have 1 image"
|
|
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
|
|
if server["should_cache_results"]:
|
|
assert not result.did_run(test_node), "The execution should have been cached"
|
|
else:
|
|
assert result.did_run(test_node), "The execution should have been re-run"
|
|
|
|
|
|
def test_parallel_sleep_nodes(self, client: ComfyClient, builder: GraphBuilder, skip_timing_checks):
|
|
# Warmup execution to ensure server is fully initialized
|
|
run_warmup(client)
|
|
|
|
g = builder
|
|
image = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
|
|
# Create sleep nodes for each duration
|
|
sleep_node1 = g.node("TestSleep", value=image.out(0), seconds=2.9)
|
|
sleep_node2 = g.node("TestSleep", value=image.out(0), seconds=3.1)
|
|
sleep_node3 = g.node("TestSleep", value=image.out(0), seconds=3.0)
|
|
|
|
# Add outputs to verify the execution
|
|
_output1 = g.node("PreviewImage", images=sleep_node1.out(0))
|
|
_output2 = g.node("PreviewImage", images=sleep_node2.out(0))
|
|
_output3 = g.node("PreviewImage", images=sleep_node3.out(0))
|
|
|
|
start_time = time.time()
|
|
result = client.run(g)
|
|
elapsed_time = time.time() - start_time
|
|
|
|
# The test should take around 3.0 seconds (the longest sleep duration)
|
|
# plus some overhead, but definitely less than the sum of all sleeps (9.0s)
|
|
if not skip_timing_checks:
|
|
assert elapsed_time < 8.9, f"Parallel execution took {elapsed_time}s, expected less than 8.9s"
|
|
|
|
# Verify that all nodes executed
|
|
assert result.did_run(sleep_node1), "Sleep node 1 should have run"
|
|
assert result.did_run(sleep_node2), "Sleep node 2 should have run"
|
|
assert result.did_run(sleep_node3), "Sleep node 3 should have run"
|
|
|
|
def test_parallel_sleep_expansion(self, client: ComfyClient, builder: GraphBuilder, skip_timing_checks):
|
|
# Warmup execution to ensure server is fully initialized
|
|
run_warmup(client)
|
|
|
|
g = builder
|
|
# Create input images with different values
|
|
image1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
image2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
image3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
|
|
# Create a TestParallelSleep node that expands into multiple TestSleep nodes
|
|
parallel_sleep = g.node("TestParallelSleep",
|
|
image1=image1.out(0),
|
|
image2=image2.out(0),
|
|
image3=image3.out(0),
|
|
sleep1=4.8,
|
|
sleep2=4.9,
|
|
sleep3=5.0)
|
|
output = g.node("SaveImage", images=parallel_sleep.out(0))
|
|
|
|
start_time = time.time()
|
|
result = client.run(g)
|
|
elapsed_time = time.time() - start_time
|
|
|
|
# Similar to the previous test, expect parallel execution of the sleep nodes
|
|
# which should complete in less than the sum of all sleeps
|
|
# Lots of leeway here since Windows CI is slow
|
|
if not skip_timing_checks:
|
|
assert elapsed_time < 13.0, f"Expansion execution took {elapsed_time}s"
|
|
|
|
# Verify the parallel sleep node executed
|
|
assert result.did_run(parallel_sleep), "ParallelSleep node should have run"
|
|
|
|
# Verify we get an image as output (blend of the three input images)
|
|
result_images = result.get_images(output)
|
|
assert len(result_images) == 1, "Should have 1 image"
|
|
# Average pixel value should be around 170 (255 * 2 // 3)
|
|
avg_value = numpy.array(result_images[0]).mean()
|
|
assert avg_value == 170, f"Image average value {avg_value} should be 170"
|
|
|
|
# This tests that nodes with OUTPUT_IS_LIST function correctly when they receive an ExecutionBlocker
|
|
# as input. We also test that when that list (containing an ExecutionBlocker) is passed to a node,
|
|
# only that one entry in the list is blocked.
|
|
def test_execution_block_list_output(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
image1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
image2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
image3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
image_list = g.node("TestMakeListNode", value1=image1.out(0), value2=image2.out(0), value3=image3.out(0))
|
|
int1 = g.node("StubInt", value=1)
|
|
int2 = g.node("StubInt", value=2)
|
|
int3 = g.node("StubInt", value=3)
|
|
int_list = g.node("TestMakeListNode", value1=int1.out(0), value2=int2.out(0), value3=int3.out(0))
|
|
compare = g.node("TestIntConditions", a=int_list.out(0), b=2, operation="==")
|
|
blocker = g.node("TestExecutionBlocker", input=image_list.out(0), block=compare.out(0), verbose=False)
|
|
|
|
list_output = g.node("TestMakeListNode", value1=blocker.out(0))
|
|
output = g.node("PreviewImage", images=list_output.out(0))
|
|
|
|
result = client.run(g)
|
|
assert result.did_run(output), "The execution should have run"
|
|
images = result.get_images(output)
|
|
assert len(images) == 2, "Should have 2 images"
|
|
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be black"
|
|
assert numpy.array(images[1]).min() == 0 and numpy.array(images[1]).max() == 0, "Second image should also be black"
|
|
|
|
# Output nodes included in the partial execution list are executed
|
|
def test_partial_execution_included_outputs(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
|
|
# Create two separate output nodes
|
|
output1 = g.node("SaveImage", images=input1.out(0))
|
|
output2 = g.node("SaveImage", images=input2.out(0))
|
|
|
|
# Run with partial execution targeting only output1
|
|
result = client.run(g, partial_execution_targets=[output1.id])
|
|
|
|
assert result.was_executed(input1), "Input1 should have been executed (run or cached)"
|
|
assert result.was_executed(output1), "Output1 should have been executed (run or cached)"
|
|
assert not result.did_run(input2), "Input2 should not have run"
|
|
assert not result.did_run(output2), "Output2 should not have run"
|
|
|
|
# Verify only output1 produced results
|
|
assert len(result.get_images(output1)) == 1, "Output1 should have produced an image"
|
|
assert len(result.get_images(output2)) == 0, "Output2 should not have produced an image"
|
|
|
|
# Output nodes NOT included in the partial execution list are NOT executed
|
|
def test_partial_execution_excluded_outputs(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
input3 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
|
|
|
# Create three output nodes
|
|
output1 = g.node("SaveImage", images=input1.out(0))
|
|
output2 = g.node("SaveImage", images=input2.out(0))
|
|
output3 = g.node("SaveImage", images=input3.out(0))
|
|
|
|
# Run with partial execution targeting only output1 and output3
|
|
result = client.run(g, partial_execution_targets=[output1.id, output3.id])
|
|
|
|
assert result.was_executed(input1), "Input1 should have been executed"
|
|
assert result.was_executed(input3), "Input3 should have been executed"
|
|
assert result.was_executed(output1), "Output1 should have been executed"
|
|
assert result.was_executed(output3), "Output3 should have been executed"
|
|
assert not result.did_run(input2), "Input2 should not have run"
|
|
assert not result.did_run(output2), "Output2 should not have run"
|
|
|
|
# Output nodes NOT in list ARE executed if necessary for nodes that are in the list
|
|
def test_partial_execution_dependencies(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
|
|
# Create a processing chain with an OUTPUT_NODE that has socket outputs
|
|
output_with_socket = g.node("TestOutputNodeWithSocketOutput", image=input1.out(0), value=2.0)
|
|
|
|
# Create another node that depends on the output_with_socket
|
|
dependent_node = g.node("TestLazyMixImages",
|
|
image1=output_with_socket.out(0),
|
|
image2=input1.out(0),
|
|
mask=g.node("StubMask", value=0.5, height=512, width=512, batch_size=1).out(0))
|
|
|
|
# Create the final output
|
|
final_output = g.node("SaveImage", images=dependent_node.out(0))
|
|
|
|
# Run with partial execution targeting only the final output
|
|
result = client.run(g, partial_execution_targets=[final_output.id])
|
|
|
|
# All nodes should have been executed because they're dependencies
|
|
assert result.was_executed(input1), "Input1 should have been executed"
|
|
assert result.was_executed(output_with_socket), "Output with socket should have been executed (dependency)"
|
|
assert result.was_executed(dependent_node), "Dependent node should have been executed"
|
|
assert result.was_executed(final_output), "Final output should have been executed"
|
|
|
|
# Lazy execution works with partial execution
|
|
def test_partial_execution_with_lazy_nodes(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
input3 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
|
|
|
# Create masks that will trigger different lazy execution paths
|
|
mask1 = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1) # Will only need image1
|
|
mask2 = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) # Will need both images
|
|
|
|
# Create two lazy mix nodes
|
|
lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask1.out(0))
|
|
lazy_mix2 = g.node("TestLazyMixImages", image1=input2.out(0), image2=input3.out(0), mask=mask2.out(0))
|
|
|
|
output1 = g.node("SaveImage", images=lazy_mix1.out(0))
|
|
output2 = g.node("SaveImage", images=lazy_mix2.out(0))
|
|
|
|
# Run with partial execution targeting only output1
|
|
result = client.run(g, partial_execution_targets=[output1.id])
|
|
|
|
# For output1 path - only input1 should run due to lazy evaluation (mask=0.0)
|
|
assert result.was_executed(input1), "Input1 should have been executed"
|
|
assert not result.did_run(input2), "Input2 should not have run (lazy evaluation)"
|
|
assert result.was_executed(mask1), "Mask1 should have been executed"
|
|
assert result.was_executed(lazy_mix1), "Lazy mix1 should have been executed"
|
|
assert result.was_executed(output1), "Output1 should have been executed"
|
|
|
|
# Nothing from output2 path should run
|
|
assert not result.did_run(input3), "Input3 should not have run"
|
|
assert not result.did_run(mask2), "Mask2 should not have run"
|
|
assert not result.did_run(lazy_mix2), "Lazy mix2 should not have run"
|
|
assert not result.did_run(output2), "Output2 should not have run"
|
|
|
|
# Multiple OUTPUT_NODEs with dependencies
|
|
def test_partial_execution_multiple_output_nodes(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
|
|
# Create a chain of OUTPUT_NODEs
|
|
output_node1 = g.node("TestOutputNodeWithSocketOutput", image=input1.out(0), value=1.5)
|
|
output_node2 = g.node("TestOutputNodeWithSocketOutput", image=output_node1.out(0), value=2.0)
|
|
|
|
# Create regular output nodes
|
|
save1 = g.node("SaveImage", images=output_node1.out(0))
|
|
save2 = g.node("SaveImage", images=output_node2.out(0))
|
|
save3 = g.node("SaveImage", images=input2.out(0))
|
|
|
|
# Run targeting only save2
|
|
result = client.run(g, partial_execution_targets=[save2.id])
|
|
|
|
# Should run: input1, output_node1, output_node2, save2
|
|
assert result.was_executed(input1), "Input1 should have been executed"
|
|
assert result.was_executed(output_node1), "Output node 1 should have been executed (dependency)"
|
|
assert result.was_executed(output_node2), "Output node 2 should have been executed (dependency)"
|
|
assert result.was_executed(save2), "Save2 should have been executed"
|
|
|
|
# Should NOT run: input2, save1, save3
|
|
assert not result.did_run(input2), "Input2 should not have run"
|
|
assert not result.did_run(save1), "Save1 should not have run"
|
|
assert not result.did_run(save3), "Save3 should not have run"
|
|
|
|
# Empty partial execution list (should execute nothing)
|
|
def test_partial_execution_empty_list(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
_output1 = g.node("SaveImage", images=input1.out(0))
|
|
|
|
# Run with empty partial execution list
|
|
try:
|
|
_result = client.run(g, partial_execution_targets=[])
|
|
# Should get an error because no outputs are selected
|
|
assert False, "Should have raised an error for empty partial execution list"
|
|
except urllib.error.HTTPError:
|
|
pass # Expected behavior
|
|
|
|
def _create_history_item(self, client, builder):
|
|
g = GraphBuilder(prefix="offset_test")
|
|
input_node = g.node(
|
|
"StubImage", content="BLACK", height=32, width=32, batch_size=1
|
|
)
|
|
g.node("SaveImage", images=input_node.out(0))
|
|
return client.run(g)
|
|
|
|
def test_offset_returns_different_items_than_beginning_of_history(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test that offset skips items at the beginning"""
|
|
for _ in range(5):
|
|
self._create_history_item(client, builder)
|
|
|
|
first_two = client.get_all_history(max_items=2, offset=0)
|
|
next_two = client.get_all_history(max_items=2, offset=2)
|
|
|
|
assert set(first_two.keys()).isdisjoint(
|
|
set(next_two.keys())
|
|
), "Offset should skip initial items"
|
|
|
|
def test_offset_beyond_history_length_returns_empty(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test offset larger than total history returns empty result"""
|
|
self._create_history_item(client, builder)
|
|
|
|
result = client.get_all_history(offset=100)
|
|
assert len(result) == 0, "Large offset should return no items"
|
|
|
|
def test_offset_at_exact_history_length_returns_empty(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test offset equal to history length returns empty"""
|
|
for _ in range(3):
|
|
self._create_history_item(client, builder)
|
|
|
|
all_history = client.get_all_history()
|
|
result = client.get_all_history(offset=len(all_history))
|
|
assert len(result) == 0, "Offset at history length should return empty"
|
|
|
|
def test_offset_zero_equals_no_offset_parameter(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test offset=0 behaves same as omitting offset"""
|
|
self._create_history_item(client, builder)
|
|
|
|
with_zero = client.get_all_history(offset=0)
|
|
without_offset = client.get_all_history()
|
|
|
|
assert with_zero == without_offset, "offset=0 should equal no offset"
|
|
|
|
def test_offset_without_max_items_skips_from_beginning(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test offset alone (no max_items) returns remaining items"""
|
|
for _ in range(4):
|
|
self._create_history_item(client, builder)
|
|
|
|
all_items = client.get_all_history()
|
|
offset_items = client.get_all_history(offset=2)
|
|
|
|
assert (
|
|
len(offset_items) == len(all_items) - 2
|
|
), "Offset should skip specified number of items"
|
|
|
|
def test_offset_with_max_items_returns_correct_window(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test offset + max_items returns correct slice of history"""
|
|
for _ in range(6):
|
|
self._create_history_item(client, builder)
|
|
|
|
window = client.get_all_history(max_items=2, offset=1)
|
|
assert len(window) <= 2, "Should respect max_items limit"
|
|
|
|
def test_offset_near_end_returns_remaining_items_only(
|
|
self, client: ComfyClient, builder: GraphBuilder
|
|
):
|
|
"""Test offset near end of history returns only remaining items"""
|
|
for _ in range(3):
|
|
self._create_history_item(client, builder)
|
|
|
|
all_history = client.get_all_history()
|
|
# Offset to near the end
|
|
result = client.get_all_history(max_items=5, offset=len(all_history) - 1)
|
|
|
|
assert len(result) <= 1, "Should return at most 1 item when offset is near end"
|