mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 05:54:24 +08:00
112 lines
3.7 KiB
Python
112 lines
3.7 KiB
Python
import torch
|
|
import comfy.model_management
|
|
from typing_extensions import override
|
|
from comfy_api.latest import ComfyExtension, io
|
|
|
|
from kornia.morphology import dilation, erosion, opening, closing, gradient, top_hat, bottom_hat
|
|
import kornia.color
|
|
|
|
|
|
class Morphology(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="Morphology",
|
|
display_name="ImageMorphology",
|
|
category="image/postprocessing",
|
|
inputs=[
|
|
io.Image.Input("image"),
|
|
io.Combo.Input(
|
|
"operation",
|
|
options=["erode", "dilate", "open", "close", "gradient", "bottom_hat", "top_hat"],
|
|
),
|
|
io.Int.Input("kernel_size", default=3, min=3, max=999, step=1),
|
|
],
|
|
outputs=[
|
|
io.Image.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, image, operation, kernel_size) -> io.NodeOutput:
|
|
device = comfy.model_management.get_torch_device()
|
|
kernel = torch.ones(kernel_size, kernel_size, device=device)
|
|
image_k = image.to(device).movedim(-1, 1)
|
|
if operation == "erode":
|
|
output = erosion(image_k, kernel)
|
|
elif operation == "dilate":
|
|
output = dilation(image_k, kernel)
|
|
elif operation == "open":
|
|
output = opening(image_k, kernel)
|
|
elif operation == "close":
|
|
output = closing(image_k, kernel)
|
|
elif operation == "gradient":
|
|
output = gradient(image_k, kernel)
|
|
elif operation == "top_hat":
|
|
output = top_hat(image_k, kernel)
|
|
elif operation == "bottom_hat":
|
|
output = bottom_hat(image_k, kernel)
|
|
else:
|
|
raise ValueError(f"Invalid operation {operation} for morphology. Must be one of 'erode', 'dilate', 'open', 'close', 'gradient', 'tophat', 'bottomhat'")
|
|
img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1)
|
|
return io.NodeOutput(img_out)
|
|
|
|
|
|
class ImageRGBToYUV(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="ImageRGBToYUV",
|
|
category="image/batch",
|
|
inputs=[
|
|
io.Image.Input("image"),
|
|
],
|
|
outputs=[
|
|
io.Image.Output(display_name="Y"),
|
|
io.Image.Output(display_name="U"),
|
|
io.Image.Output(display_name="V"),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, image) -> io.NodeOutput:
|
|
out = kornia.color.rgb_to_ycbcr(image.movedim(-1, 1)).movedim(1, -1)
|
|
return io.NodeOutput(out[..., 0:1].expand_as(image), out[..., 1:2].expand_as(image), out[..., 2:3].expand_as(image))
|
|
|
|
class ImageYUVToRGB(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="ImageYUVToRGB",
|
|
category="image/batch",
|
|
inputs=[
|
|
io.Image.Input("Y"),
|
|
io.Image.Input("U"),
|
|
io.Image.Input("V"),
|
|
],
|
|
outputs=[
|
|
io.Image.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, Y, U, V) -> io.NodeOutput:
|
|
image = torch.cat([torch.mean(Y, dim=-1, keepdim=True), torch.mean(U, dim=-1, keepdim=True), torch.mean(V, dim=-1, keepdim=True)], dim=-1)
|
|
out = kornia.color.ycbcr_to_rgb(image.movedim(-1, 1)).movedim(1, -1)
|
|
return io.NodeOutput(out)
|
|
|
|
|
|
class MorphologyExtension(ComfyExtension):
|
|
@override
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
|
return [
|
|
Morphology,
|
|
ImageRGBToYUV,
|
|
ImageYUVToRGB,
|
|
]
|
|
|
|
|
|
async def comfy_entrypoint() -> MorphologyExtension:
|
|
return MorphologyExtension()
|
|
|