ComfyUI/comfy/ldm/chroma/layers.py
comfyanonymous 443056c401
Fix custom nodes import error. (#10747)
This should fix the import errors but will break if the custom nodes actually try to use the class.
2025-11-14 03:26:05 -05:00

64 lines
2.2 KiB
Python

import torch
from torch import Tensor, nn
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
ModulationOut,
)
# TODO: remove this in a few months
SingleStreamBlock = None
DoubleStreamBlock = None
class ChromaModulationOut(ModulationOut):
@classmethod
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
return cls(
shift=tensor[:, offset : offset + 1, :],
scale=tensor[:, offset + 1 : offset + 2, :],
gate=tensor[:, offset + 2 : offset + 3, :],
)
class Approximator(nn.Module):
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(self, x: Tensor) -> Tensor:
x = self.in_proj(x)
for layer, norms in zip(self.layers, self.norms):
x = x + layer(norms(x))
x = self.out_proj(x)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = vec
shift = shift.squeeze(1)
scale = scale.squeeze(1)
x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
x = self.linear(x)
return x