mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-08 21:44:33 +08:00
615 lines
22 KiB
Python
615 lines
22 KiB
Python
from __future__ import annotations
|
|
|
|
import av
|
|
import torchaudio
|
|
import torch
|
|
import comfy.model_management
|
|
import folder_paths
|
|
import os
|
|
import io
|
|
import json
|
|
import random
|
|
import hashlib
|
|
import node_helpers
|
|
import logging
|
|
from comfy.cli_args import args
|
|
from comfy.comfy_types import FileLocator
|
|
|
|
class EmptyLatentAudio:
|
|
def __init__(self):
|
|
self.device = comfy.model_management.intermediate_device()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "latent/audio"
|
|
|
|
def generate(self, seconds, batch_size):
|
|
length = round((seconds * 44100 / 2048) / 2) * 2
|
|
latent = torch.zeros([batch_size, 64, length], device=self.device)
|
|
return ({"samples":latent, "type": "audio"}, )
|
|
|
|
class ConditioningStableAudio:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
|
|
"seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
|
|
RETURN_NAMES = ("positive", "negative")
|
|
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def append(self, positive, negative, seconds_start, seconds_total):
|
|
positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total})
|
|
negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total})
|
|
return (positive, negative)
|
|
|
|
class VAEEncodeAudio:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "latent/audio"
|
|
|
|
def encode(self, vae, audio):
|
|
sample_rate = audio["sample_rate"]
|
|
if 44100 != sample_rate:
|
|
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
|
|
else:
|
|
waveform = audio["waveform"]
|
|
|
|
t = vae.encode(waveform.movedim(1, -1))
|
|
return ({"samples":t}, )
|
|
|
|
class VAEDecodeAudio:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
|
RETURN_TYPES = ("AUDIO",)
|
|
FUNCTION = "decode"
|
|
|
|
CATEGORY = "latent/audio"
|
|
|
|
def decode(self, vae, samples):
|
|
audio = vae.decode(samples["samples"]).movedim(-1, 1)
|
|
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
|
|
std[std < 1.0] = 1.0
|
|
audio /= std
|
|
return ({"waveform": audio, "sample_rate": 44100}, )
|
|
|
|
|
|
def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"):
|
|
|
|
filename_prefix += self.prefix_append
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
results: list[FileLocator] = []
|
|
|
|
# Prepare metadata dictionary
|
|
metadata = {}
|
|
if not args.disable_metadata:
|
|
if prompt is not None:
|
|
metadata["prompt"] = json.dumps(prompt)
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
# Opus supported sample rates
|
|
OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
|
|
|
|
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
|
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
|
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
|
|
output_path = os.path.join(full_output_folder, file)
|
|
|
|
# Use original sample rate initially
|
|
sample_rate = audio["sample_rate"]
|
|
|
|
# Handle Opus sample rate requirements
|
|
if format == "opus":
|
|
if sample_rate > 48000:
|
|
sample_rate = 48000
|
|
elif sample_rate not in OPUS_RATES:
|
|
# Find the next highest supported rate
|
|
for rate in sorted(OPUS_RATES):
|
|
if rate > sample_rate:
|
|
sample_rate = rate
|
|
break
|
|
if sample_rate not in OPUS_RATES: # Fallback if still not supported
|
|
sample_rate = 48000
|
|
|
|
# Resample if necessary
|
|
if sample_rate != audio["sample_rate"]:
|
|
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
|
|
|
|
# Create output with specified format
|
|
output_buffer = io.BytesIO()
|
|
output_container = av.open(output_buffer, mode='w', format=format)
|
|
|
|
# Set metadata on the container
|
|
for key, value in metadata.items():
|
|
output_container.metadata[key] = value
|
|
|
|
layout = 'mono' if waveform.shape[0] == 1 else 'stereo'
|
|
# Set up the output stream with appropriate properties
|
|
if format == "opus":
|
|
out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout)
|
|
if quality == "64k":
|
|
out_stream.bit_rate = 64000
|
|
elif quality == "96k":
|
|
out_stream.bit_rate = 96000
|
|
elif quality == "128k":
|
|
out_stream.bit_rate = 128000
|
|
elif quality == "192k":
|
|
out_stream.bit_rate = 192000
|
|
elif quality == "320k":
|
|
out_stream.bit_rate = 320000
|
|
elif format == "mp3":
|
|
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout)
|
|
if quality == "V0":
|
|
#TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
|
|
out_stream.codec_context.qscale = 1
|
|
elif quality == "128k":
|
|
out_stream.bit_rate = 128000
|
|
elif quality == "320k":
|
|
out_stream.bit_rate = 320000
|
|
else: #format == "flac":
|
|
out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout)
|
|
|
|
frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout=layout)
|
|
frame.sample_rate = sample_rate
|
|
frame.pts = 0
|
|
output_container.mux(out_stream.encode(frame))
|
|
|
|
# Flush encoder
|
|
output_container.mux(out_stream.encode(None))
|
|
|
|
# Close containers
|
|
output_container.close()
|
|
|
|
# Write the output to file
|
|
output_buffer.seek(0)
|
|
with open(output_path, 'wb') as f:
|
|
f.write(output_buffer.getbuffer())
|
|
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
counter += 1
|
|
|
|
return { "ui": { "audio": results } }
|
|
|
|
class SaveAudio:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "audio": ("AUDIO", ),
|
|
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_flac"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "audio"
|
|
|
|
def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None):
|
|
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo)
|
|
|
|
class SaveAudioMP3:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "audio": ("AUDIO", ),
|
|
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
|
|
"quality": (["V0", "128k", "320k"], {"default": "V0"}),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_mp3"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "audio"
|
|
|
|
def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"):
|
|
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)
|
|
|
|
class SaveAudioOpus:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "audio": ("AUDIO", ),
|
|
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
|
|
"quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_opus"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "audio"
|
|
|
|
def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"):
|
|
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)
|
|
|
|
class PreviewAudio(SaveAudio):
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
self.type = "temp"
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"audio": ("AUDIO", ), },
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
|
|
"""Convert audio to float 32 bits PCM format."""
|
|
if wav.dtype.is_floating_point:
|
|
return wav
|
|
elif wav.dtype == torch.int16:
|
|
return wav.float() / (2 ** 15)
|
|
elif wav.dtype == torch.int32:
|
|
return wav.float() / (2 ** 31)
|
|
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
|
|
|
|
def load(filepath: str) -> tuple[torch.Tensor, int]:
|
|
with av.open(filepath) as af:
|
|
if not af.streams.audio:
|
|
raise ValueError("No audio stream found in the file.")
|
|
|
|
stream = af.streams.audio[0]
|
|
sr = stream.codec_context.sample_rate
|
|
n_channels = stream.channels
|
|
|
|
frames = []
|
|
length = 0
|
|
for frame in af.decode(streams=stream.index):
|
|
buf = torch.from_numpy(frame.to_ndarray())
|
|
if buf.shape[0] != n_channels:
|
|
buf = buf.view(-1, n_channels).t()
|
|
|
|
frames.append(buf)
|
|
length += buf.shape[1]
|
|
|
|
if not frames:
|
|
raise ValueError("No audio frames decoded.")
|
|
|
|
wav = torch.cat(frames, dim=1)
|
|
wav = f32_pcm(wav)
|
|
return wav, sr
|
|
|
|
class LoadAudio:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
|
|
return {"required": {"audio": (sorted(files), {"audio_upload": True})}}
|
|
|
|
CATEGORY = "audio"
|
|
|
|
RETURN_TYPES = ("AUDIO", )
|
|
FUNCTION = "load"
|
|
|
|
def load(self, audio):
|
|
audio_path = folder_paths.get_annotated_filepath(audio)
|
|
waveform, sample_rate = load(audio_path)
|
|
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
|
|
return (audio, )
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, audio):
|
|
image_path = folder_paths.get_annotated_filepath(audio)
|
|
m = hashlib.sha256()
|
|
with open(image_path, 'rb') as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
@classmethod
|
|
def VALIDATE_INPUTS(s, audio):
|
|
if not folder_paths.exists_annotated_filepath(audio):
|
|
return "Invalid audio file: {}".format(audio)
|
|
return True
|
|
|
|
class RecordAudio:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"audio": ("AUDIO_RECORD", {})}}
|
|
|
|
CATEGORY = "audio"
|
|
|
|
RETURN_TYPES = ("AUDIO", )
|
|
FUNCTION = "load"
|
|
|
|
def load(self, audio):
|
|
audio_path = folder_paths.get_annotated_filepath(audio)
|
|
|
|
waveform, sample_rate = load(audio_path)
|
|
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
|
|
return (audio, )
|
|
|
|
|
|
class TrimAudioDuration:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"audio": ("AUDIO",),
|
|
"start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}),
|
|
"duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}),
|
|
},
|
|
}
|
|
|
|
FUNCTION = "trim"
|
|
RETURN_TYPES = ("AUDIO",)
|
|
CATEGORY = "audio"
|
|
DESCRIPTION = "Trim audio tensor into chosen time range."
|
|
|
|
def trim(self, audio, start_index, duration):
|
|
waveform = audio["waveform"]
|
|
sample_rate = audio["sample_rate"]
|
|
audio_length = waveform.shape[-1]
|
|
|
|
if start_index < 0:
|
|
start_frame = audio_length + int(round(start_index * sample_rate))
|
|
else:
|
|
start_frame = int(round(start_index * sample_rate))
|
|
start_frame = max(0, min(start_frame, audio_length - 1))
|
|
|
|
end_frame = start_frame + int(round(duration * sample_rate))
|
|
end_frame = max(0, min(end_frame, audio_length))
|
|
|
|
if start_frame >= end_frame:
|
|
raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.")
|
|
|
|
return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},)
|
|
|
|
|
|
class SplitAudioChannels:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"audio": ("AUDIO",),
|
|
}}
|
|
|
|
RETURN_TYPES = ("AUDIO", "AUDIO")
|
|
RETURN_NAMES = ("left", "right")
|
|
FUNCTION = "separate"
|
|
CATEGORY = "audio"
|
|
DESCRIPTION = "Separates the audio into left and right channels."
|
|
|
|
def separate(self, audio):
|
|
waveform = audio["waveform"]
|
|
sample_rate = audio["sample_rate"]
|
|
|
|
if waveform.shape[1] != 2:
|
|
raise ValueError("AudioSplit: Input audio has only one channel.")
|
|
|
|
left_channel = waveform[..., 0:1, :]
|
|
right_channel = waveform[..., 1:2, :]
|
|
|
|
return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate})
|
|
|
|
|
|
def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2):
|
|
if sample_rate_1 != sample_rate_2:
|
|
if sample_rate_1 > sample_rate_2:
|
|
waveform_2 = torchaudio.functional.resample(waveform_2, sample_rate_2, sample_rate_1)
|
|
output_sample_rate = sample_rate_1
|
|
logging.info(f"Resampling audio2 from {sample_rate_2}Hz to {sample_rate_1}Hz for merging.")
|
|
else:
|
|
waveform_1 = torchaudio.functional.resample(waveform_1, sample_rate_1, sample_rate_2)
|
|
output_sample_rate = sample_rate_2
|
|
logging.info(f"Resampling audio1 from {sample_rate_1}Hz to {sample_rate_2}Hz for merging.")
|
|
else:
|
|
output_sample_rate = sample_rate_1
|
|
return waveform_1, waveform_2, output_sample_rate
|
|
|
|
|
|
class AudioConcat:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"audio1": ("AUDIO",),
|
|
"audio2": ("AUDIO",),
|
|
"direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("AUDIO",)
|
|
FUNCTION = "concat"
|
|
CATEGORY = "audio"
|
|
DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction."
|
|
|
|
def concat(self, audio1, audio2, direction):
|
|
waveform_1 = audio1["waveform"]
|
|
waveform_2 = audio2["waveform"]
|
|
sample_rate_1 = audio1["sample_rate"]
|
|
sample_rate_2 = audio2["sample_rate"]
|
|
|
|
if waveform_1.shape[1] == 1:
|
|
waveform_1 = waveform_1.repeat(1, 2, 1)
|
|
logging.info("AudioConcat: Converted mono audio1 to stereo by duplicating the channel.")
|
|
if waveform_2.shape[1] == 1:
|
|
waveform_2 = waveform_2.repeat(1, 2, 1)
|
|
logging.info("AudioConcat: Converted mono audio2 to stereo by duplicating the channel.")
|
|
|
|
waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2)
|
|
|
|
if direction == 'after':
|
|
concatenated_audio = torch.cat((waveform_1, waveform_2), dim=2)
|
|
elif direction == 'before':
|
|
concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2)
|
|
|
|
return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},)
|
|
|
|
|
|
class AudioMerge:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"audio1": ("AUDIO",),
|
|
"audio2": ("AUDIO",),
|
|
"merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}),
|
|
},
|
|
}
|
|
|
|
FUNCTION = "merge"
|
|
RETURN_TYPES = ("AUDIO",)
|
|
CATEGORY = "audio"
|
|
DESCRIPTION = "Combine two audio tracks by overlaying their waveforms."
|
|
|
|
def merge(self, audio1, audio2, merge_method):
|
|
waveform_1 = audio1["waveform"]
|
|
waveform_2 = audio2["waveform"]
|
|
sample_rate_1 = audio1["sample_rate"]
|
|
sample_rate_2 = audio2["sample_rate"]
|
|
|
|
waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2)
|
|
|
|
length_1 = waveform_1.shape[-1]
|
|
length_2 = waveform_2.shape[-1]
|
|
|
|
if length_2 > length_1:
|
|
logging.info(f"AudioMerge: Trimming audio2 from {length_2} to {length_1} samples to match audio1 length.")
|
|
waveform_2 = waveform_2[..., :length_1]
|
|
elif length_2 < length_1:
|
|
logging.info(f"AudioMerge: Padding audio2 from {length_2} to {length_1} samples to match audio1 length.")
|
|
pad_shape = list(waveform_2.shape)
|
|
pad_shape[-1] = length_1 - length_2
|
|
pad_tensor = torch.zeros(pad_shape, dtype=waveform_2.dtype, device=waveform_2.device)
|
|
waveform_2 = torch.cat((waveform_2, pad_tensor), dim=-1)
|
|
|
|
if merge_method == "add":
|
|
waveform = waveform_1 + waveform_2
|
|
elif merge_method == "subtract":
|
|
waveform = waveform_1 - waveform_2
|
|
elif merge_method == "multiply":
|
|
waveform = waveform_1 * waveform_2
|
|
elif merge_method == "mean":
|
|
waveform = (waveform_1 + waveform_2) / 2
|
|
|
|
max_val = waveform.abs().max()
|
|
if max_val > 1.0:
|
|
waveform = waveform / max_val
|
|
|
|
return ({"waveform": waveform, "sample_rate": output_sample_rate},)
|
|
|
|
|
|
class AudioAdjustVolume:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"audio": ("AUDIO",),
|
|
"volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("AUDIO",)
|
|
FUNCTION = "adjust_volume"
|
|
CATEGORY = "audio"
|
|
|
|
def adjust_volume(self, audio, volume):
|
|
if volume == 0:
|
|
return (audio,)
|
|
waveform = audio["waveform"]
|
|
sample_rate = audio["sample_rate"]
|
|
|
|
gain = 10 ** (volume / 20)
|
|
waveform = waveform * gain
|
|
|
|
return ({"waveform": waveform, "sample_rate": sample_rate},)
|
|
|
|
|
|
class EmptyAudio:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}),
|
|
"sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}),
|
|
"channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("AUDIO",)
|
|
FUNCTION = "create_empty_audio"
|
|
CATEGORY = "audio"
|
|
|
|
def create_empty_audio(self, duration, sample_rate, channels):
|
|
num_samples = int(round(duration * sample_rate))
|
|
waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32)
|
|
return ({"waveform": waveform, "sample_rate": sample_rate},)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"EmptyLatentAudio": EmptyLatentAudio,
|
|
"VAEEncodeAudio": VAEEncodeAudio,
|
|
"VAEDecodeAudio": VAEDecodeAudio,
|
|
"SaveAudio": SaveAudio,
|
|
"SaveAudioMP3": SaveAudioMP3,
|
|
"SaveAudioOpus": SaveAudioOpus,
|
|
"LoadAudio": LoadAudio,
|
|
"PreviewAudio": PreviewAudio,
|
|
"ConditioningStableAudio": ConditioningStableAudio,
|
|
"RecordAudio": RecordAudio,
|
|
"TrimAudioDuration": TrimAudioDuration,
|
|
"SplitAudioChannels": SplitAudioChannels,
|
|
"AudioConcat": AudioConcat,
|
|
"AudioMerge": AudioMerge,
|
|
"AudioAdjustVolume": AudioAdjustVolume,
|
|
"EmptyAudio": EmptyAudio,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"EmptyLatentAudio": "Empty Latent Audio",
|
|
"VAEEncodeAudio": "VAE Encode Audio",
|
|
"VAEDecodeAudio": "VAE Decode Audio",
|
|
"PreviewAudio": "Preview Audio",
|
|
"LoadAudio": "Load Audio",
|
|
"SaveAudio": "Save Audio (FLAC)",
|
|
"SaveAudioMP3": "Save Audio (MP3)",
|
|
"SaveAudioOpus": "Save Audio (Opus)",
|
|
"RecordAudio": "Record Audio",
|
|
"TrimAudioDuration": "Trim Audio Duration",
|
|
"SplitAudioChannels": "Split Audio Channels",
|
|
"AudioConcat": "Audio Concat",
|
|
"AudioMerge": "Audio Merge",
|
|
"AudioAdjustVolume": "Audio Adjust Volume",
|
|
"EmptyAudio": "Empty Audio",
|
|
}
|