ComfyUI/main.py
rattus 513b0c46fb
Add RAM Pressure cache mode (#10454)
* execution: Roll the UI cache into the outputs

Currently the UI cache is parallel to the output cache with
expectations of being a content superset of the output cache.
At the same time the UI and output cache are maintained completely
seperately, making it awkward to free the output cache content without
changing the behaviour of the UI cache.

There are two actual users (getters) of the UI cache. The first is
the case of a direct content hit on the output cache when executing a
node. This case is very naturally handled by merging the UI and outputs
cache.

The second case is the history JSON generation at the end of the prompt.
This currently works by asking the cache for all_node_ids and then
pulling the cache contents for those nodes. all_node_ids is the nodes
of the dynamic prompt.

So fold the UI cache into the output cache. The current UI cache setter
now writes to a prompt-scope dict. When the output cache is set, just
get this value from the dict and tuple up with the outputs.

When generating the history, simply iterate prompt-scope dict.

This prepares support for more complex caching strategies (like RAM
pressure caching) where less than 1 workflow will be cached and it
will be desirable to keep the UI cache and output cache in sync.

* sd: Implement RAM getter for VAE

* model_patcher: Implement RAM getter for ModelPatcher

* sd: Implement RAM getter for CLIP

* Implement RAM Pressure cache

Implement a cache sensitive to RAM pressure. When RAM headroom drops
down below a certain threshold, evict RAM-expensive nodes from the
cache.

Models and tensors are measured directly for RAM usage. An OOM score
is then computed based on the RAM usage of the node.

Note the due to indirection through shared objects (like a model
patcher), multiple nodes can account the same RAM as their individual
usage. The intent is this will free chains of nodes particularly
model loaders and associate loras as they all score similar and are
sorted in close to each other.

Has a bias towards unloading model nodes mid flow while being able
to keep results like text encodings and VAE.

* execution: Convert the cache entry to NamedTuple

As commented in review.

Convert this to a named tuple and abstract away the tuple type
completely from graph.py.
2025-10-30 17:39:02 -04:00

381 lines
15 KiB
Python

import comfy.options
comfy.options.enable_args_parsing()
import os
import importlib.util
import folder_paths
import time
from comfy.cli_args import args
from app.logger import setup_logger
import itertools
import utils.extra_config
import logging
import sys
from comfy_execution.progress import get_progress_state
from comfy_execution.utils import get_executing_context
from comfy_api import feature_flags
if __name__ == "__main__":
#NOTE: These do not do anything on core ComfyUI, they are for custom nodes.
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
os.environ['DO_NOT_TRACK'] = '1'
setup_logger(log_level=args.verbose, use_stdout=args.log_stdout)
def apply_custom_paths():
# extra model paths
extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml")
if os.path.isfile(extra_model_paths_config_path):
utils.extra_config.load_extra_path_config(extra_model_paths_config_path)
if args.extra_model_paths_config:
for config_path in itertools.chain(*args.extra_model_paths_config):
utils.extra_config.load_extra_path_config(config_path)
# --output-directory, --input-directory, --user-directory
if args.output_directory:
output_dir = os.path.abspath(args.output_directory)
logging.info(f"Setting output directory to: {output_dir}")
folder_paths.set_output_directory(output_dir)
# These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes
folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints"))
folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip"))
folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae"))
folder_paths.add_model_folder_path("diffusion_models",
os.path.join(folder_paths.get_output_directory(), "diffusion_models"))
folder_paths.add_model_folder_path("loras", os.path.join(folder_paths.get_output_directory(), "loras"))
if args.input_directory:
input_dir = os.path.abspath(args.input_directory)
logging.info(f"Setting input directory to: {input_dir}")
folder_paths.set_input_directory(input_dir)
if args.user_directory:
user_dir = os.path.abspath(args.user_directory)
logging.info(f"Setting user directory to: {user_dir}")
folder_paths.set_user_directory(user_dir)
def execute_prestartup_script():
if args.disable_all_custom_nodes and len(args.whitelist_custom_nodes) == 0:
return
def execute_script(script_path):
module_name = os.path.splitext(script_path)[0]
try:
spec = importlib.util.spec_from_file_location(module_name, script_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return True
except Exception as e:
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
return False
node_paths = folder_paths.get_folder_paths("custom_nodes")
for custom_node_path in node_paths:
possible_modules = os.listdir(custom_node_path)
node_prestartup_times = []
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__":
continue
script_path = os.path.join(module_path, "prestartup_script.py")
if os.path.exists(script_path):
if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes:
logging.info(f"Prestartup Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes")
continue
time_before = time.perf_counter()
success = execute_script(script_path)
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_prestartup_times) > 0:
logging.info("\nPrestartup times for custom nodes:")
for n in sorted(node_prestartup_times):
if n[2]:
import_message = ""
else:
import_message = " (PRESTARTUP FAILED)"
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
logging.info("")
apply_custom_paths()
execute_prestartup_script()
# Main code
import asyncio
import shutil
import threading
import gc
if os.name == "nt":
os.environ['MIMALLOC_PURGE_DELAY'] = '0'
if __name__ == "__main__":
os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1'
if args.default_device is not None:
default_dev = args.default_device
devices = list(range(32))
devices.remove(default_dev)
devices.insert(0, default_dev)
devices = ','.join(map(str, devices))
os.environ['CUDA_VISIBLE_DEVICES'] = str(devices)
os.environ['HIP_VISIBLE_DEVICES'] = str(devices)
if args.cuda_device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device)
os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device)
logging.info("Set cuda device to: {}".format(args.cuda_device))
if args.oneapi_device_selector is not None:
os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector
logging.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector))
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
import cuda_malloc
if 'torch' in sys.modules:
logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.")
import comfy.utils
import execution
import server
from protocol import BinaryEventTypes
import nodes
import comfy.model_management
import comfyui_version
import app.logger
import hook_breaker_ac10a0
def cuda_malloc_warning():
device = comfy.model_management.get_torch_device()
device_name = comfy.model_management.get_torch_device_name(device)
cuda_malloc_warning = False
if "cudaMallocAsync" in device_name:
for b in cuda_malloc.blacklist:
if b in device_name:
cuda_malloc_warning = True
if cuda_malloc_warning:
logging.warning("\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
def prompt_worker(q, server_instance):
current_time: float = 0.0
cache_type = execution.CacheType.CLASSIC
if args.cache_lru > 0:
cache_type = execution.CacheType.LRU
elif args.cache_ram > 0:
cache_type = execution.CacheType.RAM_PRESSURE
elif args.cache_none:
cache_type = execution.CacheType.NONE
e = execution.PromptExecutor(server_instance, cache_type=cache_type, cache_args={ "lru" : args.cache_lru, "ram" : args.cache_ram } )
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0
while True:
timeout = 1000.0
if need_gc:
timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0)
queue_item = q.get(timeout=timeout)
if queue_item is not None:
item, item_id = queue_item
execution_start_time = time.perf_counter()
prompt_id = item[1]
server_instance.last_prompt_id = prompt_id
sensitive = item[5]
extra_data = item[3].copy()
for k in sensitive:
extra_data[k] = sensitive[k]
e.execute(item[2], prompt_id, extra_data, item[4])
need_gc = True
remove_sensitive = lambda prompt: prompt[:5] + prompt[6:]
q.task_done(item_id,
e.history_result,
status=execution.PromptQueue.ExecutionStatus(
status_str='success' if e.success else 'error',
completed=e.success,
messages=e.status_messages), process_item=remove_sensitive)
if server_instance.client_id is not None:
server_instance.send_sync("executing", {"node": None, "prompt_id": prompt_id}, server_instance.client_id)
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
# Log Time in a more readable way after 10 minutes
if execution_time > 600:
execution_time = time.strftime("%H:%M:%S", time.gmtime(execution_time))
logging.info(f"Prompt executed in {execution_time}")
else:
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
flags = q.get_flags()
free_memory = flags.get("free_memory", False)
if flags.get("unload_models", free_memory):
comfy.model_management.unload_all_models()
need_gc = True
last_gc_collect = 0
if free_memory:
e.reset()
need_gc = True
last_gc_collect = 0
if need_gc:
current_time = time.perf_counter()
if (current_time - last_gc_collect) > gc_collect_interval:
gc.collect()
comfy.model_management.soft_empty_cache()
last_gc_collect = current_time
need_gc = False
hook_breaker_ac10a0.restore_functions()
async def run(server_instance, address='', port=8188, verbose=True, call_on_start=None):
addresses = []
for addr in address.split(","):
addresses.append((addr, port))
await asyncio.gather(
server_instance.start_multi_address(addresses, call_on_start, verbose), server_instance.publish_loop()
)
def hijack_progress(server_instance):
def hook(value, total, preview_image, prompt_id=None, node_id=None):
executing_context = get_executing_context()
if prompt_id is None and executing_context is not None:
prompt_id = executing_context.prompt_id
if node_id is None and executing_context is not None:
node_id = executing_context.node_id
comfy.model_management.throw_exception_if_processing_interrupted()
if prompt_id is None:
prompt_id = server_instance.last_prompt_id
if node_id is None:
node_id = server_instance.last_node_id
progress = {"value": value, "max": total, "prompt_id": prompt_id, "node": node_id}
get_progress_state().update_progress(node_id, value, total, preview_image)
server_instance.send_sync("progress", progress, server_instance.client_id)
if preview_image is not None:
# Only send old method if client doesn't support preview metadata
if not feature_flags.supports_feature(
server_instance.sockets_metadata,
server_instance.client_id,
"supports_preview_metadata",
):
server_instance.send_sync(
BinaryEventTypes.UNENCODED_PREVIEW_IMAGE,
preview_image,
server_instance.client_id,
)
comfy.utils.set_progress_bar_global_hook(hook)
def cleanup_temp():
temp_dir = folder_paths.get_temp_directory()
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True)
def setup_database():
try:
from app.database.db import init_db, dependencies_available
if dependencies_available():
init_db()
except Exception as e:
logging.error(f"Failed to initialize database. Please ensure you have installed the latest requirements. If the error persists, please report this as in future the database will be required: {e}")
def start_comfyui(asyncio_loop=None):
"""
Starts the ComfyUI server using the provided asyncio event loop or creates a new one.
Returns the event loop, server instance, and a function to start the server asynchronously.
"""
if args.temp_directory:
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
logging.info(f"Setting temp directory to: {temp_dir}")
folder_paths.set_temp_directory(temp_dir)
cleanup_temp()
if args.windows_standalone_build:
try:
import new_updater
new_updater.update_windows_updater()
except:
pass
if not asyncio_loop:
asyncio_loop = asyncio.new_event_loop()
asyncio.set_event_loop(asyncio_loop)
prompt_server = server.PromptServer(asyncio_loop)
hook_breaker_ac10a0.save_functions()
asyncio_loop.run_until_complete(nodes.init_extra_nodes(
init_custom_nodes=(not args.disable_all_custom_nodes) or len(args.whitelist_custom_nodes) > 0,
init_api_nodes=not args.disable_api_nodes
))
hook_breaker_ac10a0.restore_functions()
cuda_malloc_warning()
setup_database()
prompt_server.add_routes()
hijack_progress(prompt_server)
threading.Thread(target=prompt_worker, daemon=True, args=(prompt_server.prompt_queue, prompt_server,)).start()
if args.quick_test_for_ci:
exit(0)
os.makedirs(folder_paths.get_temp_directory(), exist_ok=True)
call_on_start = None
if args.auto_launch:
def startup_server(scheme, address, port):
import webbrowser
if os.name == 'nt' and address == '0.0.0.0':
address = '127.0.0.1'
if ':' in address:
address = "[{}]".format(address)
webbrowser.open(f"{scheme}://{address}:{port}")
call_on_start = startup_server
async def start_all():
await prompt_server.setup()
await run(prompt_server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start)
# Returning these so that other code can integrate with the ComfyUI loop and server
return asyncio_loop, prompt_server, start_all
if __name__ == "__main__":
# Running directly, just start ComfyUI.
logging.info("Python version: {}".format(sys.version))
logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
if sys.version_info.major == 3 and sys.version_info.minor < 10:
logging.warning("WARNING: You are using a python version older than 3.10, please upgrade to a newer one. 3.12 and above is recommended.")
event_loop, _, start_all_func = start_comfyui()
try:
x = start_all_func()
app.logger.print_startup_warnings()
event_loop.run_until_complete(x)
except KeyboardInterrupt:
logging.info("\nStopped server")
cleanup_temp()