mirror of
https://git.datalinker.icu/deepseek-ai/DeepSeek-V3.git
synced 2025-12-09 04:44:28 +08:00
Fix infinite generation loop
Fix: prevent infinite token generation loop on repetitive patterns (A5A5...) in generate()
This commit is contained in:
parent
9b4e9788e4
commit
031930fb29
@ -9,6 +9,8 @@ from transformers import AutoTokenizer
|
||||
from safetensors.torch import load_model
|
||||
|
||||
from model import Transformer, ModelArgs
|
||||
import re
|
||||
import torch
|
||||
|
||||
|
||||
def sample(logits, temperature: float = 1.0):
|
||||
@ -183,3 +185,85 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
|
||||
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
|
||||
|
||||
|
||||
import re
|
||||
import torch
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
model: Transformer,
|
||||
prompt_tokens: List[List[int]],
|
||||
max_new_tokens: int,
|
||||
eos_id: int,
|
||||
temperature: float = 1.0
|
||||
) -> List[List[int]]:
|
||||
"""
|
||||
Generates new tokens with added repetition protection logic.
|
||||
Prevents infinite loops when repetitive patterns like 'A5A5A5...' occur.
|
||||
"""
|
||||
prompt_lens = [len(t) for t in prompt_tokens]
|
||||
assert max(prompt_lens) <= model.max_seq_len, (
|
||||
f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
|
||||
)
|
||||
|
||||
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
||||
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
|
||||
|
||||
for i, t in enumerate(prompt_tokens):
|
||||
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
||||
|
||||
prev_pos = 0
|
||||
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
|
||||
prompt_mask = tokens != -1
|
||||
|
||||
# --- New repetition tracking variables ---
|
||||
repeat_threshold = 10
|
||||
repeat_count = 0
|
||||
last_token = None
|
||||
|
||||
for cur_pos in range(min(prompt_lens), total_len):
|
||||
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
||||
|
||||
if temperature > 0:
|
||||
next_token = sample(logits, temperature)
|
||||
else:
|
||||
next_token = logits.argmax(dim=-1)
|
||||
|
||||
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
||||
tokens[:, cur_pos] = next_token
|
||||
|
||||
# --- 🔍 Repetition detection logic ---
|
||||
token_text = str(next_token.tolist())
|
||||
if last_token == token_text:
|
||||
repeat_count += 1
|
||||
else:
|
||||
repeat_count = 0
|
||||
last_token = token_text
|
||||
|
||||
# If same token repeats too many times → stop
|
||||
if repeat_count > repeat_threshold:
|
||||
print("[⚠️] Stopping generation: excessive repetition detected.")
|
||||
break
|
||||
|
||||
# Detect long repeating hex-like pattern such as 'A5A5A5...'
|
||||
output_str = "".join([str(x) for x in tokens[0].tolist() if x != -1])
|
||||
if re.search(r'(A5){6,}', output_str):
|
||||
print("[⚠️] Infinite hex pattern detected — stopping early.")
|
||||
break
|
||||
|
||||
# Normal stopping condition
|
||||
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
|
||||
prev_pos = cur_pos
|
||||
if finished.all():
|
||||
break
|
||||
|
||||
# Extract generated completion tokens
|
||||
completion_tokens = []
|
||||
for i, toks in enumerate(tokens.tolist()):
|
||||
toks = toks[prompt_lens[i]:prompt_lens[i] + max_new_tokens]
|
||||
if eos_id in toks:
|
||||
toks = toks[:toks.index(eos_id)]
|
||||
completion_tokens.append(toks)
|
||||
return completion_tokens
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user