keep improving

Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
youkaichao 2025-08-26 18:08:50 +08:00
parent 3745dc5ab6
commit 348e741a11
3 changed files with 28 additions and 14 deletions

View File

@ -0,0 +1,23 @@
{
"vocab_size": 129280,
"dim": 7168,
"inter_dim": 18432,
"moe_inter_dim": 2048,
"n_layers": 61,
"n_dense_layers": 3,
"n_heads": 128,
"n_routed_experts": 256,
"n_shared_experts": 1,
"n_activated_experts": 8,
"n_expert_groups": 8,
"n_limited_groups": 4,
"route_scale": 2.5,
"score_func": "sigmoid",
"q_lora_rank": 1536,
"kv_lora_rank": 512,
"qk_nope_head_dim": 128,
"qk_rope_head_dim": 64,
"v_head_dim": 128,
"dtype": "fp8",
"scale_fmt": "ue8m0"
}

View File

@ -112,10 +112,6 @@ def main(
with open(config) as f:
config_dict = json.load(f)
args = ModelArgs(**config_dict)
quantization_config = config_dict.get("quantization_config", None)
if quantization_config is not None:
args.scale_fmt = quantization_config.get("scale_fmt", None)
set_global_args(args)
print(args)
with torch.device("cuda"):
model = Transformer(args)

View File

@ -85,12 +85,6 @@ class ModelArgs:
beta_slow: int = 1
mscale: float = 1.
global_args: Optional[ModelArgs] = None
def set_global_args(args: ModelArgs):
global global_args
global_args = args
class ParallelEmbedding(nn.Module):
"""
@ -134,7 +128,7 @@ class ParallelEmbedding(nn.Module):
return y
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, scale_fmt: Optional[str] = None) -> torch.Tensor:
"""
Applies a linear transformation to the incoming data: y = xA^T + b.
This function supports specialized implementations based on quantization
@ -162,8 +156,7 @@ def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] =
weight = weight_dequant(weight, weight.scale)
return F.linear(x, weight, bias)
else:
assert global_args is not None, "global_args is required for fp8_gemm"
x, scale = act_quant(x, block_size, global_args.scale_fmt)
x, scale = act_quant(x, block_size, scale_fmt)
y = fp8_gemm(x, scale, weight, weight.scale)
if bias is not None:
y += bias
@ -181,6 +174,7 @@ class Linear(nn.Module):
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
dtype = torch.bfloat16
scale_fmt: Optional[str] = None
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
super().__init__()
@ -208,7 +202,7 @@ class Linear(nn.Module):
Returns:
torch.Tensor: Transformed tensor after linear computation.
"""
return linear(x, self.weight, self.bias)
return linear(x, self.weight, self.bias, self.scale_fmt)
class ColumnParallelLinear(Linear):
@ -764,6 +758,7 @@ class Transformer(nn.Module):
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
Linear.scale_fmt = args.scale_fmt
super().__init__()
self.max_seq_len = args.max_seq_len
self.embed = ParallelEmbedding(args.vocab_size, args.dim)