diff --git a/inference/model.py b/inference/model.py new file mode 100644 index 0000000..f8db398 --- /dev/null +++ b/inference/model.py @@ -0,0 +1,805 @@ + +import math +from dataclasses import dataclass +from typing import Tuple, Optional, Literal + +import torch +from torch import nn +import torch.nn.functional as F +import torch.distributed as dist + +from kernel import act_quant, weight_dequant, fp8_gemm + + +world_size = 1 +rank = 0 +block_size = 128 +gemm_impl: Literal["bf16", "fp8"] = "bf16" +attn_impl: Literal["naive", "absorb"] = "absorb" + +@dataclass +class ModelArgs: + """ + Data class for defining model arguments and hyperparameters. + + Attributes: + max_batch_size (int): Maximum batch size. + max_seq_len (int): Maximum sequence length. + dtype (Literal["bf16", "fp8"]): Data type for computations. + vocab_size (int): Vocabulary size. + dim (int): Model dimension. + inter_dim (int): Intermediate dimension for MLP layers. + moe_inter_dim (int): Intermediate dimension for MoE layers. + n_layers (int): Number of transformer layers. + n_dense_layers (int): Number of dense layers in the model. + n_heads (int): Number of attention heads. + n_routed_experts (int): Number of routed experts for MoE layers. + n_shared_experts (int): Number of shared experts for MoE layers. + n_activated_experts (int): Number of activated experts in MoE layers. + n_expert_groups (int): Number of expert groups. + n_limited_groups (int): Number of limited groups for MoE routing. + score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing. + route_scale (float): Scaling factor for routing scores. + q_lora_rank (int): LoRA rank for query projections. + kv_lora_rank (int): LoRA rank for key-value projections. + qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings. + qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings. + v_head_dim (int): Dimension for value projections. + original_seq_len (int): Original sequence length. + rope_theta (float): Base for rotary positional encoding. + rope_factor (float): Scaling factor for extended sequence lengths. + beta_fast (int): Fast beta correction factor. + beta_slow (int): Slow beta correction factor. + mscale (float): Scaling factor for extended attention. + """ + max_batch_size: int = 8 + max_seq_len: int = 4096 * 4 + dtype: Literal["bf16", "fp8"] = "bf16" + vocab_size: int = 102400 + dim: int = 2048 + inter_dim: int = 10944 + moe_inter_dim: int = 1408 + n_layers: int = 27 + n_dense_layers: int = 1 + n_heads: int = 16 + # moe + n_routed_experts: int = 64 + n_shared_experts: int = 2 + n_activated_experts: int = 6 + n_expert_groups: int = 1 + n_limited_groups: int = 1 + score_func: Literal["softmax", "sigmoid"] = "softmax" + route_scale: float = 1. + # mla + q_lora_rank: int = 0 + kv_lora_rank: int = 512 + qk_nope_head_dim: int = 128 + qk_rope_head_dim: int = 64 + v_head_dim: int = 128 + # yarn + original_seq_len: int = 4096 + rope_theta: float = 10000.0 + rope_factor: float = 40 + beta_fast: int = 32 + beta_slow: int = 1 + mscale: float = 1. + + +class ParallelEmbedding(nn.Module): + """ + Embedding layer with parallelism support across distributed processes. + + Args: + vocab_size (int): Vocabulary size. + dim (int): Embedding dimension. + """ + def __init__(self, vocab_size: int, dim: int): + super().__init__() + self.vocab_size = vocab_size + self.dim = dim + assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})" + self.part_vocab_size = (vocab_size // world_size) + self.vocab_start_idx = rank * self.part_vocab_size + self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size + self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for parallel embedding layer. + + Args: + x (torch.Tensor): Input tensor containing token indices. + + Returns: + torch.Tensor: Embedded representations. + + Raises: + ValueError: If `world_size` is not defined. + """ + if world_size > 1: + mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx) + x = x - self.vocab_start_idx + x[mask] = 0 + y = F.embedding(x, self.weight) + if world_size > 1: + y[mask] = 0 + dist.all_reduce(y) + return y + + +def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: + """ + Applies a linear transformation to the incoming data: y = xA^T + b. + This function supports specialized implementations based on quantization + and tensor formats. + + Args: + x (torch.Tensor): The input tensor. + weight (torch.Tensor): The weight tensor. It may be quantized and + requires dequantization for certain cases. + bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None. + + Returns: + torch.Tensor: The result of the linear transformation, which may involve + quantization-aware computations depending on the input parameters. + + Notes: + - If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version + is used for computation. + - If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied. + - For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation. + """ + if weight.element_size() > 1: + return F.linear(x, weight, bias) + elif gemm_impl == "bf16": + weight = weight_dequant(weight, weight.scale) + return F.linear(x, weight, bias) + else: + x, scale = act_quant(x, block_size) + y = fp8_gemm(x, scale, weight, weight.scale) + if bias is not None: + y += bias + return y + + +class Linear(nn.Module): + """ + Custom linear layer with support for quantized weights and optional bias. + + Args: + in_features (int): Number of input features. + out_features (int): Number of output features. + bias (bool): Whether to include a bias term. Defaults to False. + dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. + """ + dtype = torch.bfloat16 + + def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): + super().__init__() + self.in_features = in_features + self.out_features = out_features + self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype)) + if self.weight.element_size() == 1: + scale_out_features = (out_features + block_size - 1) // block_size + scale_in_features = (in_features + block_size - 1) // block_size + self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32)) + else: + self.register_parameter("scale", None) + if bias: + self.bias = nn.Parameter(torch.empty(out_features)) + else: + self.register_parameter("bias", None) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for the custom linear layer. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Transformed tensor after linear computation. + """ + return linear(x, self.weight, self.bias) + + +class ColumnParallelLinear(Linear): + """ + Linear layer with column parallelism, splitting output features across distributed processes. + + Args: + in_features (int): Number of input features. + out_features (int): Total number of output features. + bias (bool): Whether to include a bias term. Defaults to False. + dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. + """ + def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): + assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})" + self.part_out_features = out_features // world_size + super().__init__(in_features, self.part_out_features, bias, dtype) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for column parallel linear layer. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Transformed tensor with column-parallel computation. + """ + y = linear(x, self.weight, self.bias) + return y + + +class RowParallelLinear(Linear): + """ + Linear layer with row parallelism, splitting input features across distributed processes. + + Args: + in_features (int): Total number of input features. + out_features (int): Number of output features. + bias (bool): Whether to include a bias term. Defaults to False. + dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. + """ + def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): + assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})" + self.part_in_features = in_features // world_size + super().__init__(self.part_in_features, out_features, bias, dtype) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for row parallel linear layer. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Transformed tensor with row-parallel computation. + """ + y = linear(x, self.weight) + if world_size > 1: + dist.all_reduce(y) + if self.bias is not None: + y += self.bias + return y + + +class RMSNorm(nn.Module): + """ + Root Mean Square Layer Normalization (RMSNorm). + + Args: + dim (int): Dimension of the input tensor. + eps (float): Epsilon value for numerical stability. Defaults to 1e-6. + """ + def __init__(self, dim: int, eps: float = 1e-6): + super().__init__() + self.dim = dim + self.eps = eps + self.weight = nn.Parameter(torch.ones(dim)) + + def forward(self, x: torch.Tensor): + """ + Forward pass for RMSNorm. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Normalized tensor with the same shape as input. + """ + return F.rms_norm(x, (self.dim,), self.weight, self.eps) + + +def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor: + """ + Precomputes frequency-based complex exponential values for rotary positional embeddings. + + Args: + args (ModelArgs): Model arguments containing positional embedding parameters. + + Returns: + torch.Tensor: Precomputed complex exponential values for positional embeddings. + """ + dim = args.qk_rope_head_dim + seqlen = args.max_seq_len + beta_fast = args.beta_fast + beta_slow = args.beta_slow + base = args.rope_theta + factor = args.rope_factor + + def find_correction_dim(num_rotations, dim, base, max_seq_len): + """ + Computes the correction dimension for a given number of rotations in the rotary positional embedding. + + Args: + num_rotations (float): Number of rotations to compute the correction for. + dim (int): Dimensionality of the embedding space. + base (float): Base value for the exponential computation. + max_seq_len (int): Maximum sequence length. + + Returns: + float: The correction dimension based on the input parameters. + """ + return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base)) + + def find_correction_range(low_rot, high_rot, dim, base, max_seq_len): + """ + Computes the range of correction dimensions for rotary positional embeddings. + + Args: + low_rot (float): Lower bound for the number of rotations. + high_rot (float): Upper bound for the number of rotations. + dim (int): Dimensionality of the embedding space. + base (float): Base value for the exponential computation. + max_seq_len (int): Maximum sequence length. + + Returns: + Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices. + """ + low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len)) + high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len)) + return max(low, 0), min(high, dim-1) + + def linear_ramp_factor(min, max, dim): + """ + Computes a linear ramp function used to smooth values between a minimum and maximum range. + + Args: + min (float): Minimum value for the ramp function. + max (float): Maximum value for the ramp function. + dim (int): Dimensionality of the ramp tensor. + + Returns: + torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1, + clamped to the range [0, 1]. + """ + if min == max: + max += 0.001 + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + if seqlen > args.original_seq_len: + low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len) + smooth = 1 - linear_ramp_factor(low, high, dim // 2) + freqs = freqs / factor * (1 - smooth) + freqs * smooth + + t = torch.arange(seqlen) + freqs = torch.outer(t, freqs) + freqs_cis = torch.polar(torch.ones_like(freqs), freqs) + return freqs_cis + + +def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: + """ + Applies rotary positional embeddings to the input tensor. + + Args: + x (torch.Tensor): Input tensor with positional embeddings to be applied. + freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings. + + Returns: + torch.Tensor: Tensor with rotary embeddings applied. + """ + dtype = x.dtype + x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2)) + freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1)) + y = torch.view_as_real(x * freqs_cis).flatten(3) + return y.to(dtype) + + +class MLA(nn.Module): + """ + Multi-Head Latent Attention (MLA) Layer. + + Attributes: + dim (int): Dimensionality of the input features. + n_heads (int): Number of attention heads. + n_local_heads (int): Number of local attention heads for distributed systems. + q_lora_rank (int): Rank for low-rank query projection. + kv_lora_rank (int): Rank for low-rank key/value projection. + qk_nope_head_dim (int): Dimensionality of non-positional query/key projections. + qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections. + qk_head_dim (int): Total dimensionality of query/key projections. + v_head_dim (int): Dimensionality of value projections. + softmax_scale (float): Scaling factor for softmax in attention computation. + """ + def __init__(self, args: ModelArgs): + super().__init__() + self.dim = args.dim + self.n_heads = args.n_heads + self.n_local_heads = args.n_heads // world_size + self.q_lora_rank = args.q_lora_rank + self.kv_lora_rank = args.kv_lora_rank + self.qk_nope_head_dim = args.qk_nope_head_dim + self.qk_rope_head_dim = args.qk_rope_head_dim + self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim + self.v_head_dim = args.v_head_dim + + if self.q_lora_rank == 0: + self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim) + else: + self.wq_a = Linear(self.dim, self.q_lora_rank) + self.q_norm = RMSNorm(self.q_lora_rank) + self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim) + self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim) + self.kv_norm = RMSNorm(self.kv_lora_rank) + self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim)) + self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim) + self.softmax_scale = self.qk_head_dim ** -0.5 + if args.max_seq_len > args.original_seq_len: + mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0 + self.softmax_scale = self.softmax_scale * mscale * mscale + + if attn_impl == "naive": + self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False) + self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False) + else: + self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False) + self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False) + + def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): + """ + Forward pass for the Multi-Head Latent Attention (MLA) Layer. + + Args: + x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim). + start_pos (int): Starting position in the sequence for caching. + freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. + mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. + + Returns: + torch.Tensor: Output tensor with the same shape as the input. + """ + bsz, seqlen, _ = x.size() + end_pos = start_pos + seqlen + if self.q_lora_rank == 0: + q = self.wq(x) + else: + q = self.wq_b(self.q_norm(self.wq_a(x))) + q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim) + q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) + q_pe = apply_rotary_emb(q_pe, freqs_cis) + kv = self.wkv_a(x) + kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) + k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis) + if attn_impl == "naive": + q = torch.cat([q_nope, q_pe], dim=-1) + kv = self.wkv_b(self.kv_norm(kv)) + kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim) + k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) + k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1) + self.k_cache[:bsz, start_pos:end_pos] = k + self.v_cache[:bsz, start_pos:end_pos] = v + scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale + else: + wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size) + wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank) + q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim]) + self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv) + self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2) + scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) + + torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale + if mask is not None: + scores += mask.unsqueeze(1) + scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x) + if attn_impl == "naive": + x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos]) + else: + x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos]) + x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:]) + x = self.wo(x.flatten(2)) + return x + + +class MLP(nn.Module): + """ + Multi-Layer Perceptron (MLP) used as a feed-forward layer. + + Attributes: + w1 (nn.Module): Linear layer for input-to-hidden transformation. + w2 (nn.Module): Linear layer for hidden-to-output transformation. + w3 (nn.Module): Additional linear layer for feature transformation. + """ + def __init__(self, dim: int, inter_dim: int): + """ + Initializes the MLP layer. + + Args: + dim (int): Input and output dimensionality. + inter_dim (int): Hidden layer dimensionality. + """ + super().__init__() + self.w1 = ColumnParallelLinear(dim, inter_dim) + self.w2 = RowParallelLinear(inter_dim, dim) + self.w3 = ColumnParallelLinear(dim, inter_dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for the MLP layer. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Output tensor after MLP computation. + """ + return self.w2(F.silu(self.w1(x)) * self.w3(x)) + + +class Gate(nn.Module): + """ + Gating mechanism for routing inputs in a mixture-of-experts (MoE) model. + + Attributes: + dim (int): Dimensionality of input features. + topk (int): Number of top experts activated for each input. + n_groups (int): Number of groups for routing. + topk_groups (int): Number of groups to route inputs to. + score_func (str): Scoring function ('softmax' or 'sigmoid'). + route_scale (float): Scaling factor for routing weights. + weight (torch.nn.Parameter): Learnable weights for the gate. + bias (Optional[torch.nn.Parameter]): Optional bias term for the gate. + """ + def __init__(self, args: ModelArgs): + """ + Initializes the Gate module. + + Args: + args (ModelArgs): Model arguments containing gating parameters. + """ + super().__init__() + self.dim = args.dim + self.topk = args.n_activated_experts + self.n_groups = args.n_expert_groups + self.topk_groups = args.n_limited_groups + self.score_func = args.score_func + self.route_scale = args.route_scale + self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim)) + self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None + + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Forward pass for the gating mechanism. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices. + """ + scores = linear(x, self.weight) + if self.score_func == "softmax": + scores = scores.softmax(dim=-1, dtype=torch.float32) + else: + scores = scores.sigmoid() + original_scores = scores + if self.bias is not None: + scores = scores + self.bias + if self.n_groups > 1: + scores = scores.view(x.size(0), self.n_groups, -1) + if self.bias is None: + group_scores = scores.amax(dim=-1) + else: + group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1) + indices = group_scores.topk(self.topk_groups, dim=-1)[1] + mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False) + scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1) + indices = torch.topk(scores, self.topk, dim=-1)[1] + weights = original_scores.gather(1, indices) + if self.score_func == "sigmoid": + weights /= weights.sum(dim=-1, keepdim=True) + weights *= self.route_scale + return weights.type_as(x), indices + + +class Expert(nn.Module): + """ + Expert layer for Mixture-of-Experts (MoE) models. + + Attributes: + w1 (nn.Module): Linear layer for input-to-hidden transformation. + w2 (nn.Module): Linear layer for hidden-to-output transformation. + w3 (nn.Module): Additional linear layer for feature transformation. + """ + def __init__(self, dim: int, inter_dim: int): + """ + Initializes the Expert layer. + + Args: + dim (int): Input and output dimensionality. + inter_dim (int): Hidden layer dimensionality. + """ + super().__init__() + self.w1 = Linear(dim, inter_dim) + self.w2 = Linear(inter_dim, dim) + self.w3 = Linear(dim, inter_dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for the Expert layer. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Output tensor after expert computation. + """ + return self.w2(F.silu(self.w1(x)) * self.w3(x)) + + +class MoE(nn.Module): + """ + Mixture-of-Experts (MoE) module. + + Attributes: + dim (int): Dimensionality of input features. + n_routed_experts (int): Total number of experts in the model. + n_local_experts (int): Number of experts handled locally in distributed systems. + n_activated_experts (int): Number of experts activated for each input. + gate (nn.Module): Gating mechanism to route inputs to experts. + experts (nn.ModuleList): List of expert modules. + shared_experts (nn.Module): Shared experts applied to all inputs. + """ + def __init__(self, args: ModelArgs): + """ + Initializes the MoE module. + + Args: + args (ModelArgs): Model arguments containing MoE parameters. + """ + super().__init__() + self.dim = args.dim + assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})" + self.n_routed_experts = args.n_routed_experts + self.n_local_experts = args.n_routed_experts // world_size + self.n_activated_experts = args.n_activated_experts + self.experts_start_idx = rank * self.n_local_experts + self.experts_end_idx = self.experts_start_idx + self.n_local_experts + self.gate = Gate(args) + self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None + for i in range(self.n_routed_experts)]) + self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Forward pass for the MoE module. + + Args: + x (torch.Tensor): Input tensor. + + Returns: + torch.Tensor: Output tensor after expert routing and computation. + """ + shape = x.size() + x = x.view(-1, self.dim) + weights, indices = self.gate(x) + y = torch.zeros_like(x) + counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist() + for i in range(self.experts_start_idx, self.experts_end_idx): + if counts[i] == 0: + continue + expert = self.experts[i] + idx, top = torch.where(indices == i) + y[idx] += expert(x[idx]) * weights[idx, top, None] + z = self.shared_experts(x) + if world_size > 1: + dist.all_reduce(y) + return (y + z).view(shape) + + +class Block(nn.Module): + """ + Transformer block combining attention and feed-forward layers. + + Attributes: + attn (nn.Module): Attention layer (MLA). + ffn (nn.Module): Feed-forward network (MLP or MoE). + attn_norm (nn.Module): Layer normalization for attention. + ffn_norm (nn.Module): Layer normalization for feed-forward network. + """ + def __init__(self, layer_id: int, args: ModelArgs): + """ + Initializes the Transformer block. + + Args: + layer_id (int): Layer index in the transformer. + args (ModelArgs): Model arguments containing block parameters. + """ + super().__init__() + self.attn = MLA(args) + self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args) + self.attn_norm = RMSNorm(args.dim) + self.ffn_norm = RMSNorm(args.dim) + + def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor: + """ + Forward pass for the Transformer block. + + Args: + x (torch.Tensor): Input tensor. + start_pos (int): Starting position in the sequence. + freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. + mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. + + Returns: + torch.Tensor: Output tensor after block computation. + """ + x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask) + x = x + self.ffn(self.ffn_norm(x)) + return x + + +class Transformer(nn.Module): + """ + Transformer model with positional embeddings, multiple layers, and output projection. + + Attributes: + max_seq_len (int): Maximum sequence length for the transformer. + embed (nn.Module): Embedding layer for input tokens. + layers (torch.nn.ModuleList): List of transformer blocks. + norm (nn.Module): Layer normalization applied after all blocks. + head (nn.Module): Output projection layer mapping to vocabulary size. + freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. + """ + def __init__(self, args: ModelArgs): + """ + Initializes the Transformer model. + + Args: + args (ModelArgs): Model arguments containing transformer parameters. + """ + global world_size, rank + world_size = dist.get_world_size() if dist.is_initialized() else 1 + rank = dist.get_rank() if dist.is_initialized() else 0 + Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16 + super().__init__() + self.max_seq_len = args.max_seq_len + self.embed = ParallelEmbedding(args.vocab_size, args.dim) + self.layers = torch.nn.ModuleList() + for layer_id in range(args.n_layers): + self.layers.append(Block(layer_id, args)) + self.norm = RMSNorm(args.dim) + self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype()) + self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False) + + @torch.inference_mode() + def forward(self, tokens: torch.Tensor, start_pos: int = 0): + """ + Forward pass for the Transformer model. + + Args: + tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len). + start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0. + + Returns: + torch.Tensor: Logits tensor of shape (batch_size, vocab_size). + """ + seqlen = tokens.size(1) + h = self.embed(tokens) + freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen] + mask = None + if seqlen > 1: + mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) + for layer in self.layers: + h = layer(h, start_pos, freqs_cis, mask) + h = self.norm(h)[:, -1] + logits = self.head(h) + if world_size > 1: + all_logits = [torch.empty_like(logits) for _ in range(world_size)] + dist.all_gather(all_logits, logits) + logits = torch.cat(all_logits, dim=-1) + return logits + + +if __name__ == "__main__": + torch.set_default_dtype(torch.bfloat16) + torch.set_default_device("cuda") + torch.manual_seed(0) + args = ModelArgs() + x = torch.randint(0, args.vocab_size, (2, 128)) + model = Transformer(args) + print(model(x).size())