mirror of
https://git.datalinker.icu/deepseek-ai/DeepSeek-V3.git
synced 2025-12-28 02:28:44 +08:00
🚀 DeepSeek-V3: The Future of AI is Here
📊 Model at a Glance
| 🔥 Metric | 💎 Value | 🎯 Description |
|---|---|---|
| 🧠 Total Parameters | 671B | Massive scale for unprecedented capabilities |
| ⚡ Activated Parameters | 37B | Efficient MoE activation per token |
| 📝 Context Length | 128K | Extended context for complex tasks |
| 🎓 Training Tokens | 14.8T | Diverse, high-quality training data |
| ⏱️ Training Time | 2.788M H800 GPU Hours | Remarkably efficient training |
| 🏆 MATH-500 Score | 90.2% | State-of-the-art mathematical reasoning |
🌟 Revolutionary Features
🚀 DeepSeek-V3 Architecture Overview
│
├── 🧠 Innovative Architecture
│ ├── 🔄 Auxiliary-Loss-Free Load Balancing
│ ├── 🎲 Multi-Token Prediction (MTP)
│ └── 🏗️ Multi-Head Latent Attention
│
├── ⚡ Training Efficiency
│ ├── 🔢 FP8 Mixed Precision Training
│ ├── 📡 Computation-Communication Overlap
│ └── 💎 Zero Loss Spikes/Rollbacks
│
└── 🎯 Superior Performance
├── 🧮 Mathematics Excellence
├── 💻 Code Generation Mastery
└── 🤔 Advanced Reasoning
🏆 Performance Benchmarks
📚 Academic Excellence
| 🎯 Benchmark | 🥈 DeepSeek-V2 | 🥉 Qwen2.5 72B | 🥉 LLaMA3.1 405B | 🥇 DeepSeek-V3 |
|---|---|---|---|---|
| 📖 MMLU (Accuracy) | 78.4% | 85.0% | 84.4% | 🏆 87.1% |
| 🧮 MATH (Exact Match) | 43.4% | 54.4% | 49.0% | 🏆 61.6% |
| 🧠 BBH (Exact Match) | 78.8% | 79.8% | 82.9% | 🏆 87.5% |
| 📊 DROP (F1 Score) | 80.4% | 80.6% | 86.0% | 🏆 89.0% |
💻 Code Generation Mastery
| 🎯 Benchmark | 🥈 DeepSeek-V2 | 🥉 Qwen2.5 72B | 🥉 LLaMA3.1 405B | 🥇 DeepSeek-V3 |
|---|---|---|---|---|
| 👨💻 HumanEval (Pass@1) | 43.3% | 53.0% | 54.9% | 🏆 65.2% |
| 🔧 MBPP (Pass@1) | 65.0% | 72.6% | 68.4% | 🏆 75.4% |
| 🏃♂️ LiveCodeBench (Pass@1) | 11.6% | 12.9% | 15.5% | 🏆 19.4% |
🎭 Chat Model Excellence
| 🎯 Benchmark | 🤖 GPT-4o | 🎭 Claude-3.5-Sonnet | 🦙 LLaMA3.1 405B | 🥇 DeepSeek-V3 |
|---|---|---|---|---|
| 🏟️ Arena-Hard | 80.4 | 85.2 | 69.3 | 🏆 85.5 |
| 🦙 AlpacaEval 2.0 | 51.1% | 52.0% | 40.5% | 🏆 70.0% |
| 📐 AIME 2024 | 9.3% | 16.0% | 23.3% | 🏆 39.2% |
| 🧮 MATH-500 | 74.6% | 78.3% | 73.8% | 🏆 90.2% |
📦 Model Downloads
🎯 Choose Your Model
| 🤖 Model | 📊 Parameters | 🔗 Download | ⭐ Use Case |
|---|---|---|---|
| 🔬 DeepSeek-V3-Base | 671B (37B active) | Research & Fine-tuning | |
| 💬 DeepSeek-V3-Chat | 671B (37B active) | Conversations & Applications |
🌐 Try Online
🚀 Local Deployment Options
🔥 Recommended Frameworks
🖥️ Hardware Support
| 🔧 Platform | 💻 Hardware | 🎨 Precision | 📋 Framework |
|---|---|---|---|
| 🟢 NVIDIA GPUs | H100, H800, A100 | FP8, BF16, INT4/8 | All frameworks |
| 🔴 AMD GPUs | MI300X, MI250X | FP8, BF16 | SGLang, vLLM |
| 🟠 Huawei Ascend | 910B NPUs | BF16, INT8 | MindIE |
⚡ Quick Start
🐍 1. Installation
# Clone the repository
git clone https://github.com/deepseek-ai/DeepSeek-V3.git
cd DeepSeek-V3/inference
# Install dependencies
pip install -r requirements.txt
🔧 2. Model Conversion
# Convert HuggingFace weights
python convert.py \
--hf-ckpt-path /path/to/DeepSeek-V3 \
--save-path /path/to/DeepSeek-V3-Demo \
--n-experts 256 \
--model-parallel 16
🎯 3. Run Inference
# Interactive chat
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR \
generate.py --ckpt-path /path/to/DeepSeek-V3-Demo \
--config configs/config_671B.json --interactive --temperature 0.7
# Batch processing
torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR \
generate.py --ckpt-path /path/to/DeepSeek-V3-Demo \
--config configs/config_671B.json --input-file $FILE
🏗️ Architecture Deep Dive
🧠 Core Innovations
┌─────────────────────────────────────────────────────────────┐
│ 🚀 DeepSeek-V3 Architecture │
├─────────────────────────────────────────────────────────────┤
│ 🔄 Auxiliary-Loss-Free Load Balancing │
│ ├── ⚖️ Minimizes performance degradation │
│ └── 🎯 Optimal expert utilization │
│ │
│ 🎲 Multi-Token Prediction (MTP) │
│ ├── 🚀 Enhanced model performance │
│ └── ⚡ Speculative decoding acceleration │
│ │
│ 🔢 FP8 Mixed Precision Training │
│ ├── 💎 First extreme-scale validation │
│ └── ⚡ Ultimate training efficiency │
│ │
│ 🧠 Knowledge Distillation from DeepSeek-R1 │
│ ├── 🔗 Long-Chain-of-Thought integration │
│ └── 🎯 Reasoning capability enhancement │
└─────────────────────────────────────────────────────────────┘
📈 Training Efficiency
| 🎯 Metric | 💎 Achievement | 🏆 Industry Impact |
|---|---|---|
| ⏱️ Training Time | 2.664M H800 GPU hours | Most efficient 671B model |
| 📊 Data Volume | 14.8T high-quality tokens | Comprehensive knowledge base |
| 🎯 Stability | Zero loss spikes/rollbacks | Unprecedented training stability |
| 💰 Cost Efficiency | Economical pre-training | Accessible large-scale AI |
🎨 Context Window Performance
🔍 Needle in a Haystack (NIAH) Results
Context Length Performance
████████████████████████████████████████ 128K ✅ Perfect
██████████████████████████████████████ 96K ✅ Excellent
████████████████████████████████████ 64K ✅ Excellent
██████████████████████████████████ 32K ✅ Perfect
████████████████████████████ 16K ✅ Perfect
████████████████████ 8K ✅ Perfect
████████████ 4K ✅ Perfect
🏆 DeepSeek-V3 maintains excellent performance across all context lengths up to 128K tokens
📄 Research & Citation
📚 Technical Paper
📖 Citation
@misc{deepseekai2024deepseekv3technicalreport,
title={DeepSeek-V3 Technical Report},
author={DeepSeek-AI},
year={2024},
eprint={2412.19437},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.19437},
}
📜 License & Usage
🌟 Community & Support
🚀 Ready to Explore the Future?
DeepSeek-V3 represents a leap forward in artificial intelligence, combining unprecedented scale with remarkable efficiency. Join thousands of researchers, developers, and innovators who are already building the future with DeepSeek-V3.
🎯 Built with ❤️ by DeepSeek-AI • Pushing the boundaries of artificial intelligence
Description
Languages
Python
100%