mirror of
https://git.datalinker.icu/ali-vilab/TeaCache
synced 2025-12-08 20:34:24 +08:00
support TangoFlux
This commit is contained in:
parent
0ef3f02754
commit
3e4a7faab7
@ -64,6 +64,7 @@
|
||||
|
||||
## Latest News 🔥
|
||||
- **Welcome for PRs to support other models. Please star ⭐ our project and stay tuned.**
|
||||
- [2025/01/07] 🔥 Support [TangoFlux](https://github.com/declare-lab/TangoFlux). TeaCache works well for Audio Diffusion Models! Rescaling coefficients for FLUX can be directly applied to TangoFLUX.
|
||||
- [2025/01/06] 🔥 [ComfyUI-HunyuanVideoWrapper](https://github.com/kijai/ComfyUI-HunyuanVideoWrapper) supports TeaCache. Thanks [@kijai](https://github.com/kijai), [ctf05](https://github.com/ctf05) and [DarioFT](https://github.com/DarioFT).
|
||||
- [2024/12/30] 🔥 Support [Mochi](https://github.com/genmoai/mochi) and [LTX-Video](https://github.com/Lightricks/LTX-Video) for Video Diffusion Models. Support [Lumina-T2X](https://github.com/Alpha-VLLM/Lumina-T2X) for Image Diffusion Models.
|
||||
- [2024/12/27] 🔥 Support [FLUX](https://github.com/black-forest-labs/flux). TeaCache works well for Image Diffusion Models!
|
||||
@ -99,6 +100,10 @@ Please refer to [TeaCache4LTX-Video](./TeaCache4LTX-Video/README.md).
|
||||
|
||||
Please refer to [TeaCache4Lumina-T2X](./TeaCache4Lumina-T2X/README.md).
|
||||
|
||||
## TeaCache for TangoFlux
|
||||
|
||||
Please refer to [TeaCache4TangoFlux](./TeaCache4TangoFlux/README.md).
|
||||
|
||||
## Installation
|
||||
|
||||
Prerequisites:
|
||||
@ -156,12 +161,12 @@ python common_metrics/eval.py --gt_video_dir aa --generated_video_dir bb
|
||||
```
|
||||
## Acknowledgement
|
||||
|
||||
This repository is built based on [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Diffusers](https://github.com/huggingface/diffusers), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte), [CogVideoX](https://github.com/THUDM/CogVideo), [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [ConsisID](https://github.com/PKU-YuanGroup/ConsisID), [FLUX](https://github.com/black-forest-labs/flux), [Mochi](https://github.com/genmoai/mochi), [LTX-Video](https://github.com/Lightricks/LTX-Video) and [Lumina-T2X](https://github.com/Alpha-VLLM/Lumina-T2X). Thanks for their contributions!
|
||||
This repository is built based on [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Diffusers](https://github.com/huggingface/diffusers), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte), [CogVideoX](https://github.com/THUDM/CogVideo), [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [ConsisID](https://github.com/PKU-YuanGroup/ConsisID), [FLUX](https://github.com/black-forest-labs/flux), [Mochi](https://github.com/genmoai/mochi), [LTX-Video](https://github.com/Lightricks/LTX-Video), [Lumina-T2X](https://github.com/Alpha-VLLM/Lumina-T2X) and [TangoFlux](https://github.com/declare-lab/TangoFlux). Thanks for their contributions!
|
||||
|
||||
## License
|
||||
|
||||
* The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
|
||||
* For [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Diffusers](https://github.com/huggingface/diffusers), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte), [CogVideoX](https://github.com/THUDM/CogVideo), [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [ConsisID](https://github.com/PKU-YuanGroup/ConsisID), [FLUX](https://github.com/black-forest-labs/flux), [Mochi](https://github.com/genmoai/mochi), [LTX-Video](https://github.com/Lightricks/LTX-Video) and [Lumina-T2X](https://github.com/Alpha-VLLM/Lumina-T2X), please follow their LICENSE.
|
||||
* For [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Diffusers](https://github.com/huggingface/diffusers), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte), [CogVideoX](https://github.com/THUDM/CogVideo), [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [ConsisID](https://github.com/PKU-YuanGroup/ConsisID), [FLUX](https://github.com/black-forest-labs/flux), [Mochi](https://github.com/genmoai/mochi), [LTX-Video](https://github.com/Lightricks/LTX-Video), [Lumina-T2X](https://github.com/Alpha-VLLM/Lumina-T2X), and [TangoFlux](https://github.com/declare-lab/TangoFlux), please follow their LICENSE.
|
||||
* The service is a research preview. Please contact us if you find any potential violations. (liufeng20@mails.ucas.ac.cn)
|
||||
|
||||
## Citation
|
||||
|
||||
41
TeaCache4TangoFlux/README.md
Normal file
41
TeaCache4TangoFlux/README.md
Normal file
@ -0,0 +1,41 @@
|
||||
<!-- ## **TeaCache4TangoFlux** -->
|
||||
# TeaCache4TangoFlux
|
||||
|
||||
[TeaCache](https://github.com/LiewFeng/TeaCache) can speedup [TangoFlux](https://github.com/declare-lab/TangoFlux) 2x without much audio quality degradation, in a training-free manner.
|
||||
|
||||
## 📈 Inference Latency Comparisons on a Single A800
|
||||
|
||||
|
||||
| TangoFlux | TeaCache (0.25) | TeaCache (0.4) |
|
||||
|:-------------------:|:----------------------------:|:--------------------:|
|
||||
| ~4.08 s | ~2.42 s | ~1.95 s |
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
pip install git+https://github.com/declare-lab/TangoFlux
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
You can modify the thresh in line 266 to obtain your desired trade-off between latency and audio quality. For single-gpu inference, you can use the following command:
|
||||
|
||||
```bash
|
||||
python teacache_tango_flux.py
|
||||
```
|
||||
|
||||
## Citation
|
||||
If you find TeaCache is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.
|
||||
|
||||
```
|
||||
@article{liu2024timestep,
|
||||
title={Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model},
|
||||
author={Liu, Feng and Zhang, Shiwei and Wang, Xiaofeng and Wei, Yujie and Qiu, Haonan and Zhao, Yuzhong and Zhang, Yingya and Ye, Qixiang and Wan, Fang},
|
||||
journal={arXiv preprint arXiv:2411.19108},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
We would like to thank the contributors to the [TangoFlux](https://github.com/declare-lab/TangoFlux).
|
||||
272
TeaCache4TangoFlux/teacache_tango_flux.py
Normal file
272
TeaCache4TangoFlux/teacache_tango_flux.py
Normal file
@ -0,0 +1,272 @@
|
||||
import torchaudio
|
||||
from tangoflux import TangoFluxInference
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
from diffusers.models import FluxTransformer2DModel
|
||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
def teacache_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
pooled_projections: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_ids: torch.Tensor = None,
|
||||
txt_ids: torch.Tensor = None,
|
||||
guidance: torch.Tensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`FluxTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
||||
Input `hidden_states`.
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
timestep = timestep.to(hidden_states.dtype) * 1000
|
||||
if guidance is not None:
|
||||
guidance = guidance.to(hidden_states.dtype) * 1000
|
||||
else:
|
||||
guidance = None
|
||||
temb = (
|
||||
self.time_text_embed(timestep, pooled_projections)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, pooled_projections)
|
||||
)
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pos_embed(ids)
|
||||
|
||||
if self.enable_teacache:
|
||||
inp = hidden_states.clone()
|
||||
temb_ = temb.clone()
|
||||
modulated_inp, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.transformer_blocks[0].norm1(inp, emb=temb_)
|
||||
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
||||
should_calc = True
|
||||
self.accumulated_rel_l1_distance = 0
|
||||
else:
|
||||
coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01]
|
||||
rescale_func = np.poly1d(coefficients)
|
||||
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
||||
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
||||
should_calc = False
|
||||
else:
|
||||
should_calc = True
|
||||
self.accumulated_rel_l1_distance = 0
|
||||
self.previous_modulated_input = modulated_inp
|
||||
self.cnt += 1
|
||||
if self.cnt == self.num_steps:
|
||||
self.cnt = 0
|
||||
|
||||
if self.enable_teacache:
|
||||
if not should_calc:
|
||||
hidden_states += self.previous_residual
|
||||
else:
|
||||
ori_hidden_states = hidden_states.clone()
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
self.previous_residual = hidden_states - ori_hidden_states
|
||||
else:
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
output = self.proj_out(hidden_states)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
FluxTransformer2DModel.forward = teacache_forward
|
||||
seed = 42
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
prompt = 'Hammer slowly hitting the wooden table'
|
||||
steps = 50
|
||||
|
||||
|
||||
model = TangoFluxInference(name='declare-lab/TangoFlux')
|
||||
# TeaCache
|
||||
model.model.transformer.__class__.enable_teacache = True
|
||||
model.model.transformer.__class__.cnt = 0
|
||||
model.model.transformer.__class__.num_steps = steps
|
||||
model.model.transformer.__class__.rel_l1_thresh = 0.25 # 0.25 for 1.7x speedup, 0.4 for 2.1x speedup
|
||||
model.model.transformer.__class__.accumulated_rel_l1_distance = 0
|
||||
model.model.transformer.__class__.previous_modulated_input = None
|
||||
model.model.transformer.__class__.previous_residual = None
|
||||
|
||||
audio = model.generate(prompt, steps=steps, duration=10)
|
||||
torchaudio.save('teacache_tango_flux_{}.wav'.format(prompt), audio, 44100)
|
||||
Loading…
x
Reference in New Issue
Block a user