mirror of
https://git.datalinker.icu/ali-vilab/TeaCache
synced 2025-12-10 05:14:24 +08:00
add consisid
This commit is contained in:
parent
dee6b7e07e
commit
485e1d6924
11
README.md
11
README.md
@ -54,6 +54,7 @@
|
||||

|
||||
|
||||
## Latest News 🔥
|
||||
- [2024/12/25] 🔥 Support [ConsisID](https://github.com/PKU-YuanGroup/ConsisID).
|
||||
- [2024/12/24] 🔥 Support [HunyuanVideo](https://github.com/Tencent/HunyuanVideo).
|
||||
- [2024/12/19] 🔥 Support [CogVideoX](https://github.com/THUDM/CogVideo).
|
||||
- [2024/12/06] 🎉 Release the [code](https://github.com/LiewFeng/TeaCache) of TeaCache. Support [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan) and [Latte](https://github.com/Vchitect/Latte).
|
||||
@ -65,6 +66,10 @@ We introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching
|
||||
## TeaCache for HunyuanVideo
|
||||
Please refer to [TeaCache4HunyuanVideo](./TeaCache4HunyuanVideo/README.md).
|
||||
|
||||
## TeaCache for ConsisID
|
||||
|
||||
Please refer to [TeaCache4ConsisID](./TeaCache4ConsisID/README.md).
|
||||
|
||||
## Installation
|
||||
|
||||
Prerequisites:
|
||||
@ -121,10 +126,6 @@ python vbench/cal_vbench.py --score_dir bbb
|
||||
python common_metrics/eval.py --gt_video_dir aa --generated_video_dir bb
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Citation
|
||||
If you find TeaCache is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.
|
||||
|
||||
@ -139,4 +140,4 @@ If you find TeaCache is useful in your research or applications, please consider
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
This repository is built based on [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte), [CogVideoX](https://github.com/THUDM/CogVideo) and [HunyuanVideo](https://github.com/Tencent/HunyuanVideo). Thanks for their contributions!
|
||||
This repository is built based on [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte), [CogVideoX](https://github.com/THUDM/CogVideo), [HunyuanVideo](https://github.com/Tencent/HunyuanVideo) and [ConsisID](https://github.com/PKU-YuanGroup/ConsisID). Thanks for their contributions!
|
||||
|
||||
56
TeaCache4ConsisID/README.md
Normal file
56
TeaCache4ConsisID/README.md
Normal file
@ -0,0 +1,56 @@
|
||||
<!-- ## **TeaCache4HunyuanVideo** -->
|
||||
# TeaCache4ConsisID
|
||||
|
||||
[TeaCache](https://github.com/LiewFeng/TeaCache) can speedup [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) 2x without much visual quality degradation, in a training-free manner.
|
||||
|
||||
## 📈 Inference Latency Comparisons on a Single H100 GPU
|
||||
|
||||
| ConsisID | TeaCache (0.1) | TeaCache (0.15) | TeaCache (0.20) |
|
||||
| :------: | :------------: | :-------------: | :-------------: |
|
||||
| ~110 s | ~70 s | ~53 s | ~41 s |
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
Follow [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) to clone the repo and finish the installation, then you can modify the `rel_l1_thresh` to obtain your desired trade-off between latency and visul quality, and change the `ckpts_path`, `prompt`, `image` to customize your identity-preserving video.
|
||||
|
||||
For single-gpu inference, you can use the following command:
|
||||
|
||||
```bash
|
||||
cd TeaCache4ConsisID
|
||||
|
||||
python3 teacache_sample_video.py \
|
||||
--rel_l1_thresh 0.1 \
|
||||
--ckpts_path BestWishYsh/ConsisID-preview \
|
||||
--image "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" \
|
||||
--prompt "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy\'s path, adding depth to the scene. The lighting highlights the boy\'s subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." \
|
||||
--seed 42 \
|
||||
--num_infer_steps 50 \
|
||||
--output_path ./teacache_results
|
||||
```
|
||||
|
||||
To generate a video with 8 GPUs, you can use the following [here](https://github.com/PKU-YuanGroup/ConsisID/tree/main/parallel_inference).
|
||||
|
||||
## Resources
|
||||
|
||||
Learn more about ConsisID with the following resources.
|
||||
- A [video](https://www.youtube.com/watch?v=PhlgC-bI5SQ) demonstrating ConsisID's main features.
|
||||
- The research paper, [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://hf.co/papers/2411.17440) for more details.
|
||||
|
||||
## Citation
|
||||
|
||||
If you find TeaCache is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.
|
||||
|
||||
```
|
||||
@article{liu2024timestep,
|
||||
title={Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model},
|
||||
author={Liu, Feng and Zhang, Shiwei and Wang, Xiaofeng and Wei, Yujie and Qiu, Haonan and Zhao, Yuzhong and Zhang, Yingya and Ye, Qixiang and Wan, Fang},
|
||||
journal={arXiv preprint arXiv:2411.19108},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
We would like to thank the contributors to the [ConsisID](https://github.com/PKU-YuanGroup/ConsisID).
|
||||
276
TeaCache4ConsisID/teacache_sample_video.py
Normal file
276
TeaCache4ConsisID/teacache_sample_video.py
Normal file
@ -0,0 +1,276 @@
|
||||
import os
|
||||
import argparse
|
||||
import numpy as np
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import ConsisIDPipeline
|
||||
from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
|
||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from diffusers.utils import export_to_video
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def teacache_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
timestep: Union[int, float, torch.LongTensor],
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
id_cond: Optional[torch.Tensor] = None,
|
||||
id_vit_hidden: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
if attention_kwargs is not None:
|
||||
attention_kwargs = attention_kwargs.copy()
|
||||
lora_scale = attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
# fuse clip and insightface
|
||||
if self.is_train_face:
|
||||
assert id_cond is not None and id_vit_hidden is not None
|
||||
id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
||||
id_vit_hidden = [
|
||||
tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden
|
||||
]
|
||||
valid_face_emb = self.local_facial_extractor(
|
||||
id_cond, id_vit_hidden
|
||||
) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048])
|
||||
|
||||
batch_size, num_frames, channels, height, width = hidden_states.shape
|
||||
|
||||
# 1. Time embedding
|
||||
timesteps = timestep
|
||||
t_emb = self.time_proj(timesteps)
|
||||
|
||||
# timesteps does not contain any weights and will always return f32 tensors
|
||||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||||
# there might be better ways to encapsulate this.
|
||||
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
||||
emb = self.time_embedding(t_emb, timestep_cond)
|
||||
|
||||
# 2. Patch embedding
|
||||
# torch.Size([1, 226, 4096]) torch.Size([1, 13, 32, 60, 90])
|
||||
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) # torch.Size([1, 17776, 3072])
|
||||
hidden_states = self.embedding_dropout(hidden_states) # torch.Size([1, 17776, 3072])
|
||||
|
||||
text_seq_length = encoder_hidden_states.shape[1]
|
||||
encoder_hidden_states = hidden_states[:, :text_seq_length] # torch.Size([1, 226, 3072])
|
||||
hidden_states = hidden_states[:, text_seq_length:] # torch.Size([1, 17550, 3072])
|
||||
|
||||
if self.enable_teacache:
|
||||
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
||||
should_calc = True
|
||||
self.accumulated_rel_l1_distance = 0
|
||||
else:
|
||||
coefficients = [-1.53880483e+03, 8.43202495e+02, -1.34363087e+02, 7.97131516e+00, -5.23162339e-02]
|
||||
rescale_func = np.poly1d(coefficients)
|
||||
self.accumulated_rel_l1_distance += rescale_func(((emb-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
||||
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
||||
should_calc = False
|
||||
else:
|
||||
should_calc = True
|
||||
self.accumulated_rel_l1_distance = 0
|
||||
self.previous_modulated_input = emb
|
||||
self.cnt = 0 if self.cnt == self.num_steps-1 else self.cnt + 1
|
||||
|
||||
if self.enable_teacache:
|
||||
if not should_calc:
|
||||
hidden_states += self.previous_residual
|
||||
encoder_hidden_states += self.previous_residual_encoder
|
||||
else:
|
||||
ori_hidden_states = hidden_states.clone()
|
||||
ori_encoder_hidden_states = encoder_hidden_states.clone()
|
||||
# 3. Transformer blocks
|
||||
ca_idx = 0
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
emb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
else:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=emb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
if self.is_train_face:
|
||||
if i % self.cross_attn_interval == 0 and valid_face_emb is not None:
|
||||
hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx](
|
||||
valid_face_emb, hidden_states
|
||||
) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072])
|
||||
ca_idx += 1
|
||||
|
||||
self.previous_residual = hidden_states - ori_hidden_states
|
||||
self.previous_residual_encoder = encoder_hidden_states - ori_encoder_hidden_states
|
||||
else:
|
||||
# 3. Transformer blocks
|
||||
ca_idx = 0
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
emb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
else:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=emb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
if self.is_train_face:
|
||||
if i % self.cross_attn_interval == 0 and valid_face_emb is not None:
|
||||
hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx](
|
||||
valid_face_emb, hidden_states
|
||||
) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072])
|
||||
ca_idx += 1
|
||||
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
hidden_states = self.norm_final(hidden_states)
|
||||
hidden_states = hidden_states[:, text_seq_length:]
|
||||
|
||||
# 4. Final block
|
||||
hidden_states = self.norm_out(hidden_states, temb=emb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# 5. Unpatchify
|
||||
# Note: we use `-1` instead of `channels`:
|
||||
# - It is okay to `channels` use for ConsisID (number of input channels is equal to output channels)
|
||||
p = self.config.patch_size
|
||||
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
||||
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
|
||||
def main(args):
|
||||
seed = args.seed
|
||||
num_infer_steps = args.num_infer_steps
|
||||
output_path = args.output_path
|
||||
rel_l1_thresh = args.rel_l1_thresh # higher speedup will cause to worse quality -- 0.1 for 1.6x speedup -- 0.15 for 2.1x speedup -- 0.2 for 2.5x speedup
|
||||
ckpts_path = args.ckpts_path
|
||||
# ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body).
|
||||
prompt = args.prompt
|
||||
image = args.image
|
||||
|
||||
if not os.path.exists(ckpts_path):
|
||||
print("Base Model not found, downloading from Hugging Face...")
|
||||
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir=ckpts_path)
|
||||
else:
|
||||
print(f"Base Model already exists in {ckpts_path}, skipping download.")
|
||||
|
||||
if not os.path.exists(output_path):
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
|
||||
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = (
|
||||
prepare_face_models(ckpts_path, device="cuda", dtype=torch.bfloat16)
|
||||
)
|
||||
pipe = ConsisIDPipeline.from_pretrained(ckpts_path, torch_dtype=torch.bfloat16)
|
||||
pipe.to("cuda")
|
||||
|
||||
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(
|
||||
face_helper_1,
|
||||
face_clip_model,
|
||||
face_helper_2,
|
||||
eva_transform_mean,
|
||||
eva_transform_std,
|
||||
face_main_model,
|
||||
"cuda",
|
||||
torch.bfloat16,
|
||||
image,
|
||||
is_align_face=True,
|
||||
)
|
||||
|
||||
# TeaCache Config
|
||||
pipe.transformer.__class__.enable_teacache = True
|
||||
pipe.transformer.__class__.cnt = 0
|
||||
pipe.transformer.__class__.num_steps = num_infer_steps - 1
|
||||
pipe.transformer.__class__.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup -- 0.15 for 2.1x speedup -- 0.2 for 2.5x speedup
|
||||
pipe.transformer.__class__.accumulated_rel_l1_distance = 0
|
||||
pipe.transformer.__class__.previous_modulated_input = None
|
||||
pipe.transformer.__class__.previous_residual = None
|
||||
pipe.transformer.__class__.previous_residual_encoder = None
|
||||
pipe.transformer.__class__.forward = teacache_forward
|
||||
|
||||
video = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
num_inference_steps=num_infer_steps,
|
||||
guidance_scale=6.0,
|
||||
use_dynamic_cfg=False,
|
||||
id_vit_hidden=id_vit_hidden,
|
||||
id_cond=id_cond,
|
||||
kps_cond=face_kps,
|
||||
generator=torch.Generator("cuda").manual_seed(seed),
|
||||
)
|
||||
file_count = len([f for f in os.listdir(output_path) if os.path.isfile(os.path.join(output_path, f))])
|
||||
video_path = f"{output_path}/{seed}_{file_count:04d}.mp4"
|
||||
export_to_video(video.frames[0], video_path, fps=8)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run ConsisID with given parameters")
|
||||
|
||||
parser.add_argument('--seed', type=int, default=42, help='Random seed')
|
||||
parser.add_argument('--num_infer_steps', type=int, default=50, help='Number of inference steps')
|
||||
parser.add_argument("--output_path", type=str, default="./teacache_results", help="The path where the generated video will be saved")
|
||||
# higher speedup will cause to worse quality -- 0.1 for 1.6x speedup -- 0.15 for 2.1x speedup -- 0.2 for 2.5x speedup
|
||||
parser.add_argument('--rel_l1_thresh', type=float, default=0.1, help='Higher speedup will cause to worse quality -- 0.1 for 1.6x speedup -- 0.15 for 2.1x speedup -- 0.2 for 2.5x speedup')
|
||||
parser.add_argument('--ckpts_path', type=str, default="/storage/ysh/Code/ID_Consistency/Code/2_offen_codes/0_temp_hf/ConsisID/BestWishYsh/ConsisID-preview", help='Path to checkpoint')
|
||||
# ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body).
|
||||
parser.add_argument('--prompt', type=str, default="The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy\'s path, adding depth to the scene. The lighting highlights the boy\'s subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel.", help='Description of the scene for the model to interpret')
|
||||
parser.add_argument('--image', type=str, default="/storage/ysh/Code/ID_Consistency/Code/2_offen_codes/ConsisID_upload/asserts/example_images/2.png", help='URL or path to input image')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
@ -1,8 +1,8 @@
|
||||
accelerate>0.17.0
|
||||
bs4
|
||||
click
|
||||
colossalai==0.4.0
|
||||
diffusers==0.30.0
|
||||
colossalai
|
||||
diffusers
|
||||
einops
|
||||
fabric
|
||||
ftfy
|
||||
@ -22,5 +22,5 @@ sentencepiece
|
||||
timm
|
||||
torch>=1.13
|
||||
tqdm
|
||||
peft==0.13.2
|
||||
transformers==4.39.3
|
||||
peft
|
||||
transformers
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user