Update README.md

This commit is contained in:
spawner 2025-06-08 17:47:30 +08:00 committed by GitHub
parent c9e2d6454c
commit f7d676521a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,14 +1,24 @@
<!-- ## **TeaCache4LuminaT2X** --> <!-- ## **TeaCache4LuminaT2X** -->
# TeaCache4Lumina2 # TeaCache4Lumina2
[TeaCache](https://github.com/LiewFeng/TeaCache) can speedup [Lumina-Image-2.0](https://github.com/Alpha-VLLM/Lumina-Image-2.0) without much visual quality degradation, in a training-free manner. The following image shows the experimental results of Lumina-Image-2.0 and TeaCache with different versions: Lumina-Image-2.0 (~25 s), TeaCache (0.2) (~16.7 s, 1.5x speedup), TeaCache (0.3) (~15.6 s, 1.6x speedup), TeaCache (0.5) (~13.79 s, 1.8x speedup), TeaCache (1.1) (~11.9 s, 2.1x speedup). [TeaCache](https://github.com/LiewFeng/TeaCache) can speedup [Lumina-Image-2.0](https://github.com/Alpha-VLLM/Lumina-Image-2.0) without much visual quality degradation, in a training-free manner. The following image shows the experimental results of Lumina-Image-2.0 and TeaCache with different versions: v1(0 (original), 0.2 (1.25x speedup), 0.3 (1.5625x speedup), 0.4 (2.0833x speedup), 0.5 (2.5x speedup).) and v2(Lumina-Image-2.0 (~25 s), TeaCache (0.2) (~16.7 s, 1.5x speedup), TeaCache (0.3) (~15.6 s, 1.6x speedup), TeaCache (0.5) (~13.79 s, 1.8x speedup), TeaCache (1.1) (~11.9 s, 2.1x speedup)).
The original coefficients The v1 coefficients
`[393.76566581,603.50993606,209.10239044,23.00726601,0.86377344]` `[393.76566581,603.50993606,209.10239044,23.00726601,0.86377344]`
exhibit poor quality at low L1 values but perform better with higher L1 settings, though at a slower speed. The new coefficients exhibit poor quality at low L1 values but perform better with higher L1 settings, though at a slower speed. The v2 coefficients
`[225.7042019806413,608.8453716535591,304.1869942338369,124.21267720116742,1.4089066892956552]` `[225.7042019806413,608.8453716535591,304.1869942338369,124.21267720116742,1.4089066892956552]`
, however, offer faster computation and better quality at low L1 levels but incur significant feature loss at high L1 values. , however, offer faster computation and better quality at low L1 levels but incur significant feature loss at high L1 values.
## v1
<p align="center">
<img src="https://github.com/user-attachments/assets/d2c87b99-e4ac-4407-809a-caf9750f41ef" width="150" style="margin: 5px;">
<img src="https://github.com/user-attachments/assets/411ff763-9c31-438d-8a9b-3ec5c88f6c27" width="150" style="margin: 5px;">
<img src="https://github.com/user-attachments/assets/e57dfb60-a07f-4e17-837e-e46a69d8b9c0" width="150" style="margin: 5px;">
<img src="https://github.com/user-attachments/assets/6e3184fe-e31a-452c-a447-48d4b74fcc10" width="150" style="margin: 5px;">
<img src="https://github.com/user-attachments/assets/d6a52c4c-bd22-45c0-9f40-00a2daa85fc8" width="150" style="margin: 5px;">
</p>
## v2
<p align="center"> <p align="center">
<img src="https://github.com/user-attachments/assets/aea9907b-830e-497b-b968-aaeef463c7ef" width="150" style="margin: 5px;"> <img src="https://github.com/user-attachments/assets/aea9907b-830e-497b-b968-aaeef463c7ef" width="150" style="margin: 5px;">
<img src="https://github.com/user-attachments/assets/0e258295-eaaa-49ce-b16f-bba7f7ada6c1" width="150" style="margin: 5px;"> <img src="https://github.com/user-attachments/assets/0e258295-eaaa-49ce-b16f-bba7f7ada6c1" width="150" style="margin: 5px;">
@ -18,8 +28,12 @@ The original coefficients
</p> </p>
## 📈 Inference Latency Comparisons on a single 4090 (step 50) ## 📈 Inference Latency Comparisons on a single 4090 (step 50)
## v1
| Lumina-Image-2.0 | TeaCache (0.2) | TeaCache (0.3) | TeaCache (0.4) | TeaCache (0.5) |
|:-------------------------:|:---------------------------:|:--------------------:|:---------------------:|:---------------------:|
| ~25 s | ~20 s | ~16 s | ~12 s | ~10 s |
## v2
| Lumina-Image-2.0 | TeaCache (0.2) | TeaCache (0.3) | TeaCache (0.5) | TeaCache (1.1) | | Lumina-Image-2.0 | TeaCache (0.2) | TeaCache (0.3) | TeaCache (0.5) | TeaCache (1.1) |
|:-------------------------:|:---------------------------:|:--------------------:|:---------------------:|:---------------------:| |:-------------------------:|:---------------------------:|:--------------------:|:---------------------:|:---------------------:|
| ~25 s | ~16.7 s | ~15.6 s | ~13.79 s | ~11.9 s | | ~25 s | ~16.7 s | ~15.6 s | ~13.79 s | ~11.9 s |