import torch import torch.distributed as dist from colossalai.cluster.process_group_mesh import ProcessGroupMesh from torch.distributed import ProcessGroup from videosys.utils.logging import init_dist_logger, logger class ParallelManager(ProcessGroupMesh): def __init__(self, dp_size, cp_size, sp_size): super().__init__(dp_size, cp_size, sp_size) dp_axis, cp_axis, sp_axis = 0, 1, 2 self.dp_size = dp_size self.dp_group: ProcessGroup = self.get_group_along_axis(dp_axis) self.dp_rank = dist.get_rank(self.dp_group) self.cp_size = cp_size if cp_size > 1: self.cp_group: ProcessGroup = self.get_group_along_axis(cp_axis) self.cp_rank = dist.get_rank(self.cp_group) else: self.cp_group = None self.cp_rank = None self.sp_size = sp_size if sp_size > 1: self.sp_group: ProcessGroup = self.get_group_along_axis(sp_axis) self.sp_rank = dist.get_rank(self.sp_group) else: self.sp_group = None self.sp_rank = None logger.info(f"Init parallel manager with dp_size: {dp_size}, cp_size: {cp_size}, sp_size: {sp_size}") def initialize( rank=0, world_size=1, init_method=None, ): if not dist.is_initialized(): try: dist.destroy_process_group() except Exception: pass dist.init_process_group(backend="nccl", init_method=init_method, world_size=world_size, rank=rank) torch.cuda.set_device(rank) init_dist_logger() torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True