from typing import Any, Dict, Optional, Tuple, Union from diffusers import DiffusionPipeline from diffusers.models import FluxTransformer2DModel from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers import torch import numpy as np logger = logging.get_logger(__name__) # pylint: disable=invalid-name def teacache_forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool = True, controlnet_blocks_repeat: bool = False, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None temb = ( self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if txt_ids.ndim == 3: logger.warning( "Passing `txt_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) txt_ids = txt_ids[0] if img_ids.ndim == 3: logger.warning( "Passing `img_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) img_ids = img_ids[0] ids = torch.cat((txt_ids, img_ids), dim=0) image_rotary_emb = self.pos_embed(ids) if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) if self.enable_teacache: inp = hidden_states.clone() temb_ = temb.clone() modulated_inp, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.transformer_blocks[0].norm1(inp, emb=temb_) if self.cnt == 0 or self.cnt == self.num_steps-1: should_calc = True self.accumulated_rel_l1_distance = 0 else: coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01] rescale_func = np.poly1d(coefficients) self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) if self.accumulated_rel_l1_distance < self.rel_l1_thresh: should_calc = False else: should_calc = True self.accumulated_rel_l1_distance = 0 self.previous_modulated_input = modulated_inp self.cnt += 1 if self.cnt == self.num_steps: self.cnt = 0 if self.enable_teacache: if not should_calc: hidden_states += self.previous_residual else: ori_hidden_states = hidden_states.clone() for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) interval_control = int(np.ceil(interval_control)) # For Xlabs ControlNet. if controlnet_blocks_repeat: hidden_states = ( hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] ) else: hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] self.previous_residual = hidden_states - ori_hidden_states else: for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) interval_control = int(np.ceil(interval_control)) # For Xlabs ControlNet. if controlnet_blocks_repeat: hidden_states = ( hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] ) else: hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) FluxTransformer2DModel.forward = teacache_forward num_inference_steps = 28 seed = 42 prompt = "An image of a squirrel in Picasso style" pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16) pipeline.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power # TeaCache pipeline.transformer.__class__.enable_teacache = True pipeline.transformer.__class__.cnt = 0 pipeline.transformer.__class__.num_steps = num_inference_steps pipeline.transformer.__class__.rel_l1_thresh = 0.6 # 0.25 for 1.5x speedup, 0.4 for 1.8x speedup, 0.6 for 2.0x speedup, 0.8 for 2.25x speedup pipeline.transformer.__class__.accumulated_rel_l1_distance = 0 pipeline.transformer.__class__.previous_modulated_input = None pipeline.transformer.__class__.previous_residual = None pipeline.to("cuda") img = pipeline( prompt, num_inference_steps=num_inference_steps, generator=torch.Generator("cpu").manual_seed(seed) ).images[0] img.save("{}.png".format('TeaCache_' + prompt))