# Adapted from Vchitect # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # Vchitect: https://github.com/Vchitect/Vchitect-2.0 # diffusers: https://github.com/huggingface/diffusers # -------------------------------------------------------- from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.activations import GEGLU, GELU, ApproximateGELU from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput from diffusers.utils import USE_PEFT_BACKEND, deprecate, unscale_lora_layers from diffusers.utils.torch_utils import maybe_allow_in_graph from einops import rearrange from torch import nn from videosys.core.comm import gather_from_second_dim, set_pad, split_from_second_dim from videosys.core.parallel_mgr import ParallelManager from videosys.models.modules.attentions import VchitectAttention, VchitectAttnProcessor def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output @maybe_allow_in_graph class JointTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False): super().__init__() self.context_pre_only = context_pre_only context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" self.norm1 = AdaLayerNormZero(dim) if context_norm_type == "ada_norm_continous": self.norm1_context = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif context_norm_type == "ada_norm_zero": self.norm1_context = AdaLayerNormZero(dim) else: raise ValueError( f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" ) processor = VchitectAttnProcessor() self.attn = VchitectAttention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim // num_attention_heads, heads=num_attention_heads, out_dim=attention_head_dim, context_pre_only=context_pre_only, bias=True, processor=processor, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") if not context_pre_only: self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_context = None self.ff_context = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, freqs_cis: torch.Tensor, full_seqlen: int, Frame: int, timestep: int, ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) if self.context_pre_only: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) else: norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, freqs_cis=freqs_cis, full_seqlen=full_seqlen, Frame=Frame, timestep=timestep, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. if self.context_pre_only: encoder_hidden_states = None else: context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory context_ff_output = _chunked_feed_forward( self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size ) else: context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return encoder_hidden_states, hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): """ The Transformer model introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. out_channels (`int`, defaults to 16): Number of output channels. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 18, attention_head_dim: int = 64, num_attention_heads: int = 18, joint_attention_dim: int = 4096, caption_projection_dim: int = 1152, pooled_projection_dim: int = 2048, out_channels: int = 16, pos_embed_max_size: int = 96, rope_scaling_factor: float = 1.0, ): super().__init__() default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, # hard-code for now. ) self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim ) self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) # `attention_head_dim` is doubled to account for the mixing. # It needs to crafted when we get the actual checkpoints. self.transformer_blocks = nn.ModuleList( [ JointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.inner_dim, context_pre_only=i == num_layers - 1, ) for i in range(self.config.num_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False # Video param # self.scatter_dim_zero = Identity() self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis( self.inner_dim // self.config.num_attention_heads, 1000000, theta=1e6, rope_scaling_factor=rope_scaling_factor, # todo max pos embeds ) # self.vid_token = nn.Parameter(torch.empty(self.inner_dim)) # parallel self.parallel_manager = None def enable_parallel(self, dp_size, sp_size, enable_cp): # update cfg parallel if enable_cp and sp_size % 2 == 0: sp_size = sp_size // 2 cp_size = 2 else: cp_size = 1 self.parallel_manager = ParallelManager(dp_size, cp_size, sp_size) for _, module in self.named_modules(): if hasattr(module, "parallel_manager"): module.parallel_manager = self.parallel_manager @staticmethod def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device, dtype=torch.float) t = t / rope_scaling_factor freqs = torch.outer(t, freqs).float() freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, VchitectAttnProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, VchitectAttnProcessor] ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[VchitectAttnProcessor, Dict[str, VchitectAttnProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, VchitectAttention): module.fuse_projections(fuse=True) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def patchify_and_embed(self, x): B, F, C, H, W = x.size() x = rearrange(x, "b f c h w -> (b f) c h w") x = self.pos_embed(x) # [B L D] return x, F, [(H, W)] * B def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, pooled_projections: torch.FloatTensor = None, timestep: torch.LongTensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`VchitectXLTransformerModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 height, width = hidden_states.shape[-2:] batch_size = hidden_states.shape[0] hidden_states, F_num, _ = self.patchify_and_embed( hidden_states ) # takes care of adding positional embeddings too. full_seq = batch_size * F_num self.freqs_cis = self.freqs_cis.to(hidden_states.device) freqs_cis = self.freqs_cis # seq_length = hidden_states.size(1) # freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num] temb = self.time_text_embed(timestep, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if self.parallel_manager.sp_size > 1: set_pad("temporal", F_num, self.parallel_manager.sp_group) hidden_states = split_from_second_dim(hidden_states, batch_size, self.parallel_manager.sp_group) cur_temb = temb.repeat(hidden_states.shape[0] // batch_size, 1) else: cur_temb = temb.repeat(F_num, 1) for block_idx, block in enumerate(self.transformer_blocks): encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=cur_temb, freqs_cis=freqs_cis, full_seqlen=full_seq, Frame=F_num, timestep=timestep, ) if self.parallel_manager.sp_size > 1: hidden_states = gather_from_second_dim(hidden_states, batch_size, self.parallel_manager.sp_group) hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # unpatchify # hidden_states = hidden_states[:, :-1] #Drop the video token # unpatchify patch_size = self.config.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) ) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) def get_fsdp_wrap_module_list(self) -> List[nn.Module]: return list(self.transformer_blocks) @classmethod def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1): import json import os if subfolder is not None: pretrained_model_path = os.path.join(pretrained_model_path, subfolder) config_file = os.path.join(pretrained_model_path, "config.json") with open(config_file, "r") as f: config = json.load(f) config["tp_size"] = tp_size from safetensors.torch import load_file model = cls.from_config(config) # model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) model_files = [ os.path.join(pretrained_model_path, "diffusion_pytorch_model.bin"), os.path.join(pretrained_model_path, "diffusion_pytorch_model.safetensors"), ] model_file = None for fp in model_files: if os.path.exists(fp): model_file = fp if not model_file: raise RuntimeError(f"{model_file} does not exist") if not os.path.isfile(model_file): raise RuntimeError(f"{model_file} does not exist") state_dict = load_file(model_file, device="cpu") m, u = model.load_state_dict(state_dict, strict=False) model = model.to(torch_dtype) params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()] total_params = [p.numel() for n, p in model.named_parameters()] if logger is not None: logger.info(f"model_file: {model_file}") logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M") logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M") return model