# TeaCache4Wan2.1 [TeaCache](https://github.com/ali-vilab/TeaCache) can speedup [Wan2.1](https://github.com/Wan-Video/Wan2.1) 2x without much visual quality degradation, in a training-free manner. The following video shows the results generated by TeaCache-Wan2.1 with various teacache_thresh values. The corresponding teacache_thresh values are shown in the following table. https://github.com/user-attachments/assets/5ae5d6dd-bf87-4f8f-91b8-ccc5980c56ad https://github.com/user-attachments/assets/dfd047a9-e3ca-4a73-a282-4dadda8dbd43 https://github.com/user-attachments/assets/7c20bd54-96a8-4bd7-b4fa-ea4c9da81562 https://github.com/user-attachments/assets/72085f45-6b78-4fae-b58f-492360a6e55e ## 📈 Inference Latency Comparisons on a Single A800 | Wan2.1 t2v 1.3B | TeaCache (0.05) | TeaCache (0.07) | TeaCache (0.08) | |:--------------------------:|:----------------------------:|:---------------------:|:---------------------:| | ~175 s | ~117 s | ~110 s | ~88 s | | Wan2.1 t2v 14B | TeaCache (0.14) | TeaCache (0.15) | TeaCache (0.2) | |:--------------------------:|:----------------------------:|:---------------------:|:---------------------:| | ~55 min | ~38 min | ~30 min | ~27 min | | Wan2.1 i2v 480P | TeaCache (0.13) | TeaCache (0.19) | TeaCache (0.26) | |:--------------------------:|:----------------------------:|:---------------------:|:---------------------:| | ~735 s | ~464 s | ~372 s | ~300 s | | Wan2.1 i2v 720P | TeaCache (0.18) | TeaCache (0.2) | TeaCache (0.3) | |:--------------------------:|:----------------------------:|:---------------------:|:---------------------:| | ~29 min | ~17 min | ~15 min | ~12 min | ## Usage Follow [Wan2.1](https://github.com/Wan-Video/Wan2.1) to clone the repo and finish the installation, then copy 'teacache_generate.py' in this repo to the Wan2.1 repo. For T2V with 1.3B model, you can use the following command: ```bash python teacache_generate.py --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." --base_seed 42 --offload_model True --t5_cpu --teacache_thresh 0.08 ``` For T2V with 14B model, you can use the following command: ```bash python teacache_generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." --base_seed 42 --offload_model True --t5_cpu --teacache_thresh 0.2 ``` For I2V with 480P resolution, you can use the following command: ```bash python teacache_generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." --base_seed 42 --offload_model True --t5_cpu --teacache_thresh 0.26 ``` For I2V with 720P resolution, you can use the following command: ```bash python teacache_generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." --base_seed 42 --offload_model True --t5_cpu --frame_num 61 --teacache_thresh 0.3 ``` ## Acknowledgements We would like to thank the contributors to the [Wan2.1](https://github.com/Wan-Video/Wan2.1).