TeaCache/TeaCache4Cosmos/teacache_sample_video_i2v.py
2025-01-24 14:40:50 +08:00

472 lines
19 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from einops import rearrange
import torch
import numpy as np
from typing import Optional, Tuple, List, Optional
from cosmos1.models.diffusion.inference.inference_utils import add_common_arguments, check_input_frames, validate_args
from cosmos1.models.diffusion.inference.world_generation_pipeline import DiffusionVideo2WorldGenerationPipeline
from cosmos1.utils import log, misc
from cosmos1.utils.io import read_prompts_from_file, save_video
from cosmos1.models.diffusion.conditioner import DataType
from cosmos1.models.diffusion.module.blocks import adaln_norm_state
torch.enable_grad(False)
def teacache_forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to
augment condition input, the lvg model will condition on the condition_video_augment_sigma value;
we need forward_before_blocks pass to the forward_before_blocks function.
"""
inputs = self.forward_before_blocks(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = (
inputs["x"],
inputs["affline_emb_B_D"],
inputs["crossattn_emb"],
inputs["crossattn_mask"],
inputs["rope_emb_L_1_1_D"],
inputs["adaln_lora_B_3D"],
inputs["original_shape"],
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"]
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
if self.enable_teacache:
inp = x.clone()
if self.blocks["block0"].blocks[0].use_adaln_lora:
shift_B_D, scale_B_D, gate_B_D = (self.blocks["block0"].blocks[0].adaLN_modulation(affline_emb_B_D) + adaln_lora_B_3D).chunk(
self.blocks["block0"].blocks[0].n_adaln_chunks, dim=1
)
else:
shift_B_D, scale_B_D, gate_B_D = self.blocks["block0"].blocks[0].adaLN_modulation(affline_emb_B_D).chunk(self.blocks["block0"].blocks[0].n_adaln_chunks, dim=1)
shift_1_1_1_B_D, scale_1_1_1_B_D, _ = (
shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
)
modulated_inp = adaln_norm_state(self.blocks["block0"].blocks[0].norm_state, inp, scale_1_1_1_B_D, shift_1_1_1_B_D)
if self.cnt%2 == 0:
self.is_even = True # even->condition odd->uncondition
if self.cnt == 0 or self.cnt == self.num_steps:
should_calc_even = True
self.accumulated_rel_l1_distance_even = 0
else:
coefficients = [2.71156237e+02, -9.19775607e+01, 2.24437250e+00, 2.08355751e+00, 1.41776330e-01]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_modulated_input_even).abs().mean() / self.previous_modulated_input_even.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_even < self.rel_l1_thresh:
should_calc_even = False
else:
should_calc_even = True
self.accumulated_rel_l1_distance_even = 0
self.previous_modulated_input_even = modulated_inp.clone()
self.cnt += 1
if self.cnt == self.num_steps+2:
self.cnt = 0
else:
self.is_even = False
if self.cnt == 1 or self.cnt == self.num_steps+1:
should_calc_odd = True
self.accumulated_rel_l1_distance_odd = 0
else:
coefficients = [2.71156237e+02, -9.19775607e+01, 2.24437250e+00, 2.08355751e+00, 1.41776330e-01]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_modulated_input_odd).abs().mean() / self.previous_modulated_input_odd.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_odd < self.rel_l1_thresh:
should_calc_odd = False
else:
should_calc_odd = True
self.accumulated_rel_l1_distance_odd = 0
self.previous_modulated_input_odd = modulated_inp.clone()
self.cnt += 1
if self.cnt == self.num_steps+2:
self.cnt = 0
if self.enable_teacache:
if self.is_even:
if not should_calc_even:
x += self.previous_residual_even
else:
ori_x = x.clone() # (t, h, w, b, d) = (16, 44, 80, 1, 4096)
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
x = block(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
) # x(t, h, w, b, d) = (16, 44, 80, 1, 4096)
self.previous_residual_even = x - ori_x
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D") # (b, t, h, w, d) = (1, 16, 40, 80, 4096)
x_B_D_T_H_W = self.decoder_head(
x_B_T_H_W_D=x_B_T_H_W_D,
emb_B_D=affline_emb_B_D,
crossattn_emb=None,
origin_shape=original_shape,
crossattn_mask=None,
adaln_lora_B_3D=adaln_lora_B_3D,
) # (b, d, t, h, w) = (1, 16, 16, 88, 160)
return x_B_D_T_H_W
else: # odd
if not should_calc_odd:
x += self.previous_residual_odd
else:
ori_x = x.clone()
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
x = block(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
)
self.previous_residual_odd = x - ori_x
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
x_B_D_T_H_W = self.decoder_head(
x_B_T_H_W_D=x_B_T_H_W_D,
emb_B_D=affline_emb_B_D,
crossattn_emb=None,
origin_shape=original_shape,
crossattn_mask=None,
adaln_lora_B_3D=adaln_lora_B_3D,
)
return x_B_D_T_H_W
else:
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
x = block(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
)
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
x_B_D_T_H_W = self.decoder_head(
x_B_T_H_W_D=x_B_T_H_W_D,
emb_B_D=affline_emb_B_D,
crossattn_emb=None,
origin_shape=original_shape,
crossattn_mask=None,
adaln_lora_B_3D=adaln_lora_B_3D,
)
return x_B_D_T_H_W
def teacache_v2v_forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Forward pass of the video-conditioned DIT model.
Args:
x: Input tensor of shape (B, C, T, H, W)
timesteps: Timestep tensor of shape (B,)
crossattn_emb: Cross attention embeddings of shape (B, N, D)
crossattn_mask: Optional cross attention mask of shape (B, N)
fps: Optional frames per second tensor
image_size: Optional image size tensor
padding_mask: Optional padding mask tensor
scalar_feature: Optional scalar features tensor
data_type: Type of data being processed (default: DataType.VIDEO)
video_cond_bool: Optional video conditioning boolean tensor
condition_video_indicator: Optional video condition indicator tensor
condition_video_input_mask: Required mask tensor for video data type
condition_video_augment_sigma: Optional sigma values for conditional input augmentation
**kwargs: Additional keyword arguments
Returns:
torch.Tensor: Output tensor
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert condition_video_input_mask is not None, "condition_video_input_mask is required for video data type"
input_list = [x, condition_video_input_mask]
x = torch.cat(
input_list,
dim=1,
)
return teacache_forward(
self=self,
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Video to world generation demo script")
# Add common arguments
add_common_arguments(parser)
# Add video2world specific arguments
parser.add_argument(
"--diffusion_transformer_dir",
type=str,
default="Cosmos-1.0-Diffusion-7B-Video2World",
help="DiT model weights directory name relative to checkpoint_dir",
choices=[
"Cosmos-1.0-Diffusion-7B-Video2World",
"Cosmos-1.0-Diffusion-14B-Video2World",
],
)
parser.add_argument(
"--prompt_upsampler_dir",
type=str,
default="Pixtral-12B",
help="Prompt upsampler weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--input_image_or_video_path",
type=str,
help="Input video/image path for generating a single video",
)
parser.add_argument(
"--num_input_frames",
type=int,
default=1,
help="Number of input frames for video2world prediction",
choices=[1, 9],
)
parser.add_argument(
"--rel_l1_thresh",
type=float,
default=0.4,
help="Higher speedup will cause to worse quality -- 0.1 for 1.3x speedup -- 0.2 for 1.8x speedup -- 0.3 for 2.1x speedup",
)
return parser.parse_args()
def demo(cfg):
"""Run video-to-world generation demo.
This function handles the main video-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple prompts/images/videos from input
- Generating videos from prompts and images/videos
- Saving the generated videos and corresponding prompts to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (guidance, steps, dimensions)
- Input/output settings (prompts/images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
- Text files containing the processed prompts
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
misc.set_random_seed(cfg.seed)
inference_type = "video2world"
validate_args(cfg, inference_type)
# Initialize video2world generation model pipeline
pipeline = DiffusionVideo2WorldGenerationPipeline(
inference_type=inference_type,
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=cfg.diffusion_transformer_dir,
prompt_upsampler_dir=cfg.prompt_upsampler_dir,
enable_prompt_upsampler=not cfg.disable_prompt_upsampler,
offload_network=cfg.offload_diffusion_transformer,
offload_tokenizer=cfg.offload_tokenizer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
height=cfg.height,
width=cfg.width,
fps=cfg.fps,
num_video_frames=cfg.num_video_frames,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
enable_text_guardrail=False,
enable_video_guardrail=False,
)
# TeaCache
pipeline.model.net.__class__.forward = teacache_v2v_forward
pipeline.model.net.__class__.enable_teacache = True
pipeline.model.net.__class__.cnt = 0
pipeline.model.net.__class__.num_steps = cfg.num_steps * 2
pipeline.model.net.__class__.rel_l1_thresh = cfg.rel_l1_thresh
pipeline.model.net.__class__.accumulated_rel_l1_distance_even = 0
pipeline.model.net.__class__.accumulated_rel_l1_distance_odd = 0
pipeline.model.net.__class__.previous_modulated_input_even = None
pipeline.model.net.__class__.previous_modulated_input_odd = None
pipeline.model.net.__class__.previous_residual_even = None
pipeline.model.net.__class__.previous_residual_odd = None
# Handle multiple prompts if prompt file is provided
if cfg.batch_input_path:
log.info(f"Reading batch inputs from path: {args.batch_input_path}")
prompts = read_prompts_from_file(cfg.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_image_or_video_path}]
os.makedirs(cfg.video_save_folder, exist_ok=True)
for i, input_dict in enumerate(prompts):
current_prompt = input_dict.get("prompt", None)
if current_prompt is None and cfg.disable_prompt_upsampler:
log.critical("Prompt is missing, skipping world generation.")
continue
current_image_or_video_path = input_dict.get("visual_input", None)
if current_image_or_video_path is None:
log.critical("Visual input is missing, skipping world generation.")
continue
# Check input frames
if not check_input_frames(current_image_or_video_path, cfg.num_input_frames):
continue
# Generate video
generated_output = pipeline.generate(
prompt=current_prompt,
image_or_video_path=current_image_or_video_path,
negative_prompt=cfg.negative_prompt,
)
if generated_output is None:
log.critical("Guardrail blocked video2world generation.")
continue
video, prompt = generated_output
if cfg.batch_input_path:
video_save_path = os.path.join(cfg.video_save_folder, f"{i}.mp4")
prompt_save_path = os.path.join(cfg.video_save_folder, f"{i}.txt")
else:
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")
# Save video
save_video(
video=video,
fps=cfg.fps,
H=cfg.height,
W=cfg.width,
video_save_quality=5,
video_save_path=video_save_path,
)
# Save prompt to text file alongside video
with open(prompt_save_path, "wb") as f:
f.write(prompt.encode("utf-8"))
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
if __name__ == "__main__":
args = parse_arguments()
demo(args)