mirror of
https://git.datalinker.icu/ali-vilab/TeaCache
synced 2025-12-08 20:34:24 +08:00
183 lines
7.6 KiB
Python
183 lines
7.6 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from typing import Any, Dict, Optional, Tuple, Union, List
|
|
|
|
from diffusers import Lumina2Transformer2DModel, Lumina2Pipeline
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
def teacache_forward_working(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
timestep: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
encoder_attention_mask: torch.Tensor,
|
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
|
if attention_kwargs is not None:
|
|
attention_kwargs = attention_kwargs.copy()
|
|
lora_scale = attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
if USE_PEFT_BACKEND:
|
|
scale_lora_layers(self, lora_scale)
|
|
|
|
batch_size, _, height, width = hidden_states.shape
|
|
temb, encoder_hidden_states_processed = self.time_caption_embed(hidden_states, timestep, encoder_hidden_states)
|
|
(image_patch_embeddings, context_rotary_emb, noise_rotary_emb, joint_rotary_emb,
|
|
encoder_seq_lengths, seq_lengths) = self.rope_embedder(hidden_states, encoder_attention_mask)
|
|
image_patch_embeddings = self.x_embedder(image_patch_embeddings)
|
|
for layer in self.context_refiner:
|
|
encoder_hidden_states_processed = layer(encoder_hidden_states_processed, encoder_attention_mask, context_rotary_emb)
|
|
for layer in self.noise_refiner:
|
|
image_patch_embeddings = layer(image_patch_embeddings, None, noise_rotary_emb, temb)
|
|
|
|
max_seq_len = max(seq_lengths)
|
|
input_to_main_loop = image_patch_embeddings.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
|
|
for i, (enc_len, seq_len_val) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
|
|
input_to_main_loop[i, :enc_len] = encoder_hidden_states_processed[i, :enc_len]
|
|
input_to_main_loop[i, enc_len:seq_len_val] = image_patch_embeddings[i]
|
|
|
|
use_mask = len(set(seq_lengths)) > 1
|
|
attention_mask_for_main_loop_arg = None
|
|
if use_mask:
|
|
mask = input_to_main_loop.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
|
|
for i, (enc_len, seq_len_val) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
|
|
mask[i, :seq_len_val] = True
|
|
attention_mask_for_main_loop_arg = mask
|
|
|
|
should_calc = True
|
|
if self.enable_teacache:
|
|
cache_key = max_seq_len
|
|
if cache_key not in self.cache:
|
|
self.cache[cache_key] = {
|
|
"accumulated_rel_l1_distance": 0.0,
|
|
"previous_modulated_input": None,
|
|
"previous_residual": None,
|
|
}
|
|
|
|
current_cache = self.cache[cache_key]
|
|
modulated_inp, _, _, _ = self.layers[0].norm1(input_to_main_loop, temb)
|
|
|
|
if self.cnt == 0 or self.cnt == self.num_steps - 1:
|
|
should_calc = True
|
|
current_cache["accumulated_rel_l1_distance"] = 0.0
|
|
else:
|
|
if current_cache["previous_modulated_input"] is not None:
|
|
coefficients = [225.7042019806413, -608.8453716535591, 304.1869942338369, 124.21267720116742, -1.4089066892956552]
|
|
rescale_func = np.poly1d(coefficients)
|
|
prev_mod_input = current_cache["previous_modulated_input"]
|
|
prev_mean = prev_mod_input.abs().mean()
|
|
|
|
if prev_mean.item() > 1e-9:
|
|
rel_l1_change = ((modulated_inp - prev_mod_input).abs().mean() / prev_mean).cpu().item()
|
|
else:
|
|
rel_l1_change = 0.0 if modulated_inp.abs().mean().item() < 1e-9 else float('inf')
|
|
|
|
current_cache["accumulated_rel_l1_distance"] += rescale_func(rel_l1_change)
|
|
|
|
if current_cache["accumulated_rel_l1_distance"] < self.rel_l1_thresh:
|
|
should_calc = False
|
|
else:
|
|
should_calc = True
|
|
current_cache["accumulated_rel_l1_distance"] = 0.0
|
|
else:
|
|
should_calc = True
|
|
current_cache["accumulated_rel_l1_distance"] = 0.0
|
|
|
|
current_cache["previous_modulated_input"] = modulated_inp.clone()
|
|
|
|
if self.uncond_seq_len is None:
|
|
self.uncond_seq_len = cache_key
|
|
if cache_key != self.uncond_seq_len:
|
|
self.cnt += 1
|
|
if self.cnt >= self.num_steps:
|
|
self.cnt = 0
|
|
|
|
if self.enable_teacache and not should_calc:
|
|
if max_seq_len in self.cache and "previous_residual" in self.cache[max_seq_len] and self.cache[max_seq_len]["previous_residual"] is not None:
|
|
processed_hidden_states = input_to_main_loop + self.cache[max_seq_len]["previous_residual"]
|
|
else:
|
|
should_calc = True
|
|
current_processing_states = input_to_main_loop
|
|
for layer in self.layers:
|
|
current_processing_states = layer(current_processing_states, attention_mask_for_main_loop_arg, joint_rotary_emb, temb)
|
|
processed_hidden_states = current_processing_states
|
|
|
|
|
|
if not (self.enable_teacache and not should_calc) :
|
|
current_processing_states = input_to_main_loop
|
|
for layer in self.layers:
|
|
current_processing_states = layer(current_processing_states, attention_mask_for_main_loop_arg, joint_rotary_emb, temb)
|
|
|
|
if self.enable_teacache:
|
|
if max_seq_len in self.cache:
|
|
self.cache[max_seq_len]["previous_residual"] = current_processing_states - input_to_main_loop
|
|
else:
|
|
logger.warning(f"TeaCache: Cache key {max_seq_len} not found when trying to save residual.")
|
|
|
|
processed_hidden_states = current_processing_states
|
|
|
|
output_after_norm = self.norm_out(processed_hidden_states, temb)
|
|
p = self.config.patch_size
|
|
final_output_list = []
|
|
for i, (enc_len, seq_len_val) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
|
|
image_part = output_after_norm[i][enc_len:seq_len_val]
|
|
h_p, w_p = height // p, width // p
|
|
reconstructed_image = image_part.view(h_p, w_p, p, p, self.out_channels) \
|
|
.permute(4, 0, 2, 1, 3) \
|
|
.flatten(3, 4) \
|
|
.flatten(1, 2)
|
|
final_output_list.append(reconstructed_image)
|
|
|
|
final_output_tensor = torch.stack(final_output_list, dim=0)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (final_output_tensor,)
|
|
|
|
return Transformer2DModelOutput(sample=final_output_tensor)
|
|
|
|
|
|
Lumina2Transformer2DModel.forward = teacache_forward_working
|
|
|
|
ckpt_path = "NietaAniLumina_Alpha_full_round5_ep5_s182000.pth"
|
|
transformer = Lumina2Transformer2DModel.from_single_file(
|
|
ckpt_path, torch_dtype=torch.bfloat16
|
|
)
|
|
pipeline = Lumina2Pipeline.from_pretrained(
|
|
"Alpha-VLLM/Lumina-Image-2.0",
|
|
transformer=transformer,
|
|
torch_dtype=torch.bfloat16
|
|
).to("cuda")
|
|
|
|
num_inference_steps = 30
|
|
seed = 1024
|
|
prompt = "a cat holding a sign that says hello"
|
|
output_filename = f"teacache_lumina2_output.png"
|
|
|
|
# TeaCache
|
|
pipeline.transformer.__class__.enable_teacache = True
|
|
pipeline.transformer.__class__.cnt = 0
|
|
pipeline.transformer.__class__.num_steps = num_inference_steps
|
|
pipeline.transformer.__class__.rel_l1_thresh = 0.3
|
|
pipeline.transformer.__class__.cache = {}
|
|
pipeline.transformer.__class__.uncond_seq_len = None
|
|
|
|
|
|
pipeline.enable_model_cpu_offload()
|
|
image = pipeline(
|
|
prompt=prompt,
|
|
num_inference_steps=num_inference_steps,
|
|
generator=torch.Generator("cuda").manual_seed(seed)
|
|
).images[0]
|
|
|
|
image.save(output_filename)
|
|
print(f"Image saved to {output_filename}")
|