mirror of
https://git.datalinker.icu/ali-vilab/TeaCache
synced 2025-12-09 21:04:25 +08:00
645 lines
27 KiB
Python
645 lines
27 KiB
Python
# Adapted from Vchitect
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
# --------------------------------------------------------
|
|
# References:
|
|
# Vchitect: https://github.com/Vchitect/Vchitect-2.0
|
|
# diffusers: https://github.com/huggingface/diffusers
|
|
# --------------------------------------------------------
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
|
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
|
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero
|
|
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput
|
|
from diffusers.utils import USE_PEFT_BACKEND, deprecate, unscale_lora_layers
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
|
from einops import rearrange
|
|
from torch import nn
|
|
|
|
from videosys.core.comm import gather_from_second_dim, set_pad, split_from_second_dim
|
|
from videosys.core.parallel_mgr import ParallelManager
|
|
from videosys.models.modules.attentions import VchitectAttention, VchitectAttnProcessor
|
|
|
|
|
|
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
|
# "feed_forward_chunk_size" can be used to save memory
|
|
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
|
raise ValueError(
|
|
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
|
)
|
|
|
|
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
|
ff_output = torch.cat(
|
|
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
|
dim=chunk_dim,
|
|
)
|
|
return ff_output
|
|
|
|
|
|
@maybe_allow_in_graph
|
|
class JointTransformerBlock(nn.Module):
|
|
r"""
|
|
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input and output.
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
|
processing of `context` conditions.
|
|
"""
|
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False):
|
|
super().__init__()
|
|
|
|
self.context_pre_only = context_pre_only
|
|
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
|
|
|
self.norm1 = AdaLayerNormZero(dim)
|
|
|
|
if context_norm_type == "ada_norm_continous":
|
|
self.norm1_context = AdaLayerNormContinuous(
|
|
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
|
)
|
|
elif context_norm_type == "ada_norm_zero":
|
|
self.norm1_context = AdaLayerNormZero(dim)
|
|
else:
|
|
raise ValueError(
|
|
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
|
)
|
|
processor = VchitectAttnProcessor()
|
|
self.attn = VchitectAttention(
|
|
query_dim=dim,
|
|
cross_attention_dim=None,
|
|
added_kv_proj_dim=dim,
|
|
dim_head=attention_head_dim // num_attention_heads,
|
|
heads=num_attention_heads,
|
|
out_dim=attention_head_dim,
|
|
context_pre_only=context_pre_only,
|
|
bias=True,
|
|
processor=processor,
|
|
)
|
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
|
|
if not context_pre_only:
|
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
|
else:
|
|
self.norm2_context = None
|
|
self.ff_context = None
|
|
|
|
# let chunk size default to None
|
|
self._chunk_size = None
|
|
self._chunk_dim = 0
|
|
|
|
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
|
# Sets chunk feed-forward
|
|
self._chunk_size = chunk_size
|
|
self._chunk_dim = dim
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
freqs_cis: torch.Tensor,
|
|
full_seqlen: int,
|
|
Frame: int,
|
|
timestep: int,
|
|
):
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
|
if self.context_pre_only:
|
|
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
|
else:
|
|
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
|
encoder_hidden_states, emb=temb
|
|
)
|
|
|
|
# Attention.
|
|
attn_output, context_attn_output = self.attn(
|
|
hidden_states=norm_hidden_states,
|
|
encoder_hidden_states=norm_encoder_hidden_states,
|
|
freqs_cis=freqs_cis,
|
|
full_seqlen=full_seqlen,
|
|
Frame=Frame,
|
|
timestep=timestep,
|
|
)
|
|
|
|
# Process attention outputs for the `hidden_states`.
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
hidden_states = hidden_states + attn_output
|
|
|
|
norm_hidden_states = self.norm2(hidden_states)
|
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
if self._chunk_size is not None:
|
|
# "feed_forward_chunk_size" can be used to save memory
|
|
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
|
else:
|
|
ff_output = self.ff(norm_hidden_states)
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
hidden_states = hidden_states + ff_output
|
|
|
|
# Process attention outputs for the `encoder_hidden_states`.
|
|
if self.context_pre_only:
|
|
encoder_hidden_states = None
|
|
else:
|
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
|
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
|
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
|
if self._chunk_size is not None:
|
|
# "feed_forward_chunk_size" can be used to save memory
|
|
context_ff_output = _chunked_feed_forward(
|
|
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
|
)
|
|
else:
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
|
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
|
|
|
return encoder_hidden_states, hidden_states
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
r"""
|
|
A feed-forward layer.
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input.
|
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: Optional[int] = None,
|
|
mult: int = 4,
|
|
dropout: float = 0.0,
|
|
activation_fn: str = "geglu",
|
|
final_dropout: bool = False,
|
|
inner_dim=None,
|
|
bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
if inner_dim is None:
|
|
inner_dim = int(dim * mult)
|
|
dim_out = dim_out if dim_out is not None else dim
|
|
|
|
if activation_fn == "gelu":
|
|
act_fn = GELU(dim, inner_dim, bias=bias)
|
|
if activation_fn == "gelu-approximate":
|
|
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
|
elif activation_fn == "geglu":
|
|
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
|
elif activation_fn == "geglu-approximate":
|
|
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
|
|
|
self.net = nn.ModuleList([])
|
|
# project in
|
|
self.net.append(act_fn)
|
|
# project dropout
|
|
self.net.append(nn.Dropout(dropout))
|
|
# project out
|
|
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
|
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
|
if final_dropout:
|
|
self.net.append(nn.Dropout(dropout))
|
|
|
|
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
|
deprecate("scale", "1.0.0", deprecation_message)
|
|
for module in self.net:
|
|
hidden_states = module(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
|
"""
|
|
The Transformer model introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
sample_size (`int`): The width of the latent images. This is fixed during training since
|
|
it is used to learn a number of position embeddings.
|
|
patch_size (`int`): Patch size to turn the input data into small patches.
|
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
|
out_channels (`int`, defaults to 16): Number of output channels.
|
|
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
sample_size: int = 128,
|
|
patch_size: int = 2,
|
|
in_channels: int = 16,
|
|
num_layers: int = 18,
|
|
attention_head_dim: int = 64,
|
|
num_attention_heads: int = 18,
|
|
joint_attention_dim: int = 4096,
|
|
caption_projection_dim: int = 1152,
|
|
pooled_projection_dim: int = 2048,
|
|
out_channels: int = 16,
|
|
pos_embed_max_size: int = 96,
|
|
rope_scaling_factor: float = 1.0,
|
|
):
|
|
super().__init__()
|
|
default_out_channels = in_channels
|
|
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
|
|
|
self.pos_embed = PatchEmbed(
|
|
height=self.config.sample_size,
|
|
width=self.config.sample_size,
|
|
patch_size=self.config.patch_size,
|
|
in_channels=self.config.in_channels,
|
|
embed_dim=self.inner_dim,
|
|
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
|
)
|
|
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
|
)
|
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
|
# `attention_head_dim` is doubled to account for the mixing.
|
|
# It needs to crafted when we get the actual checkpoints.
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
JointTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
attention_head_dim=self.inner_dim,
|
|
context_pre_only=i == num_layers - 1,
|
|
)
|
|
for i in range(self.config.num_layers)
|
|
]
|
|
)
|
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
# Video param
|
|
# self.scatter_dim_zero = Identity()
|
|
self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis(
|
|
self.inner_dim // self.config.num_attention_heads,
|
|
1000000,
|
|
theta=1e6,
|
|
rope_scaling_factor=rope_scaling_factor, # todo max pos embeds
|
|
)
|
|
|
|
# self.vid_token = nn.Parameter(torch.empty(self.inner_dim))
|
|
|
|
# parallel
|
|
self.parallel_manager = None
|
|
|
|
def enable_parallel(self, dp_size, sp_size, enable_cp):
|
|
# update cfg parallel
|
|
if enable_cp and sp_size % 2 == 0:
|
|
sp_size = sp_size // 2
|
|
cp_size = 2
|
|
else:
|
|
cp_size = 1
|
|
|
|
self.parallel_manager = ParallelManager(dp_size, cp_size, sp_size)
|
|
|
|
for _, module in self.named_modules():
|
|
if hasattr(module, "parallel_manager"):
|
|
module.parallel_manager = self.parallel_manager
|
|
|
|
@staticmethod
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0):
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device, dtype=torch.float)
|
|
t = t / rope_scaling_factor
|
|
freqs = torch.outer(t, freqs).float()
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
|
return freqs_cis
|
|
|
|
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
|
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
|
"""
|
|
Sets the attention processor to use [feed forward
|
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
|
|
|
Parameters:
|
|
chunk_size (`int`, *optional*):
|
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
|
over each tensor of dim=`dim`.
|
|
dim (`int`, *optional*, defaults to `0`):
|
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
|
or dim=1 (sequence length).
|
|
"""
|
|
if dim not in [0, 1]:
|
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
|
|
|
# By default chunk size is 1
|
|
chunk_size = chunk_size or 1
|
|
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
|
if hasattr(module, "set_chunk_feed_forward"):
|
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
|
|
|
for child in module.children():
|
|
fn_recursive_feed_forward(child, chunk_size, dim)
|
|
|
|
for module in self.children():
|
|
fn_recursive_feed_forward(module, chunk_size, dim)
|
|
|
|
@property
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
|
def attn_processors(self) -> Dict[str, VchitectAttnProcessor]:
|
|
r"""
|
|
Returns:
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
indexed by its weight name.
|
|
"""
|
|
# set recursively
|
|
processors = {}
|
|
|
|
def fn_recursive_add_processors(
|
|
name: str, module: torch.nn.Module, processors: Dict[str, VchitectAttnProcessor]
|
|
):
|
|
if hasattr(module, "get_processor"):
|
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
return processors
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
return processors
|
|
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
|
def set_attn_processor(self, processor: Union[VchitectAttnProcessor, Dict[str, VchitectAttnProcessor]]):
|
|
r"""
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
Parameters:
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
for **all** `Attention` layers.
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
"""
|
|
count = len(self.attn_processors.keys())
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
raise ValueError(
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
)
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
if hasattr(module, "set_processor"):
|
|
if not isinstance(processor, dict):
|
|
module.set_processor(processor)
|
|
else:
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
|
def fuse_qkv_projections(self):
|
|
"""
|
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
|
are fused. For cross-attention modules, key and value projection matrices are fused.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
"""
|
|
self.original_attn_processors = None
|
|
|
|
for _, attn_processor in self.attn_processors.items():
|
|
if "Added" in str(attn_processor.__class__.__name__):
|
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
|
|
|
self.original_attn_processors = self.attn_processors
|
|
|
|
for module in self.modules():
|
|
if isinstance(module, VchitectAttention):
|
|
module.fuse_projections(fuse=True)
|
|
|
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
|
def unfuse_qkv_projections(self):
|
|
"""Disables the fused QKV projection if enabled.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
|
|
"""
|
|
if self.original_attn_processors is not None:
|
|
self.set_attn_processor(self.original_attn_processors)
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
def patchify_and_embed(self, x):
|
|
B, F, C, H, W = x.size()
|
|
x = rearrange(x, "b f c h w -> (b f) c h w")
|
|
x = self.pos_embed(x) # [B L D]
|
|
return x, F, [(H, W)] * B
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor = None,
|
|
pooled_projections: torch.FloatTensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`VchitectXLTransformerModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
from the embeddings of input conditions.
|
|
timestep ( `torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if joint_attention_kwargs is not None:
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
height, width = hidden_states.shape[-2:]
|
|
|
|
batch_size = hidden_states.shape[0]
|
|
hidden_states, F_num, _ = self.patchify_and_embed(
|
|
hidden_states
|
|
) # takes care of adding positional embeddings too.
|
|
full_seq = batch_size * F_num
|
|
|
|
self.freqs_cis = self.freqs_cis.to(hidden_states.device)
|
|
freqs_cis = self.freqs_cis
|
|
# seq_length = hidden_states.size(1)
|
|
# freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num]
|
|
temb = self.time_text_embed(timestep, pooled_projections)
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
if self.parallel_manager.sp_size > 1:
|
|
set_pad("temporal", F_num, self.parallel_manager.sp_group)
|
|
hidden_states = split_from_second_dim(hidden_states, batch_size, self.parallel_manager.sp_group)
|
|
cur_temb = temb.repeat(hidden_states.shape[0] // batch_size, 1)
|
|
else:
|
|
cur_temb = temb.repeat(F_num, 1)
|
|
|
|
for block_idx, block in enumerate(self.transformer_blocks):
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=cur_temb,
|
|
freqs_cis=freqs_cis,
|
|
full_seqlen=full_seq,
|
|
Frame=F_num,
|
|
timestep=timestep,
|
|
)
|
|
|
|
if self.parallel_manager.sp_size > 1:
|
|
hidden_states = gather_from_second_dim(hidden_states, batch_size, self.parallel_manager.sp_group)
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
# unpatchify
|
|
# hidden_states = hidden_states[:, :-1] #Drop the video token
|
|
|
|
# unpatchify
|
|
patch_size = self.config.patch_size
|
|
height = height // patch_size
|
|
width = width // patch_size
|
|
|
|
hidden_states = hidden_states.reshape(
|
|
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
|
)
|
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
|
output = hidden_states.reshape(
|
|
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
|
)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
# remove `lora_scale` from each PEFT layer
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer2DModelOutput(sample=output)
|
|
|
|
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
|
return list(self.transformer_blocks)
|
|
|
|
@classmethod
|
|
def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1):
|
|
import json
|
|
import os
|
|
|
|
if subfolder is not None:
|
|
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
|
|
|
config_file = os.path.join(pretrained_model_path, "config.json")
|
|
|
|
with open(config_file, "r") as f:
|
|
config = json.load(f)
|
|
|
|
config["tp_size"] = tp_size
|
|
from safetensors.torch import load_file
|
|
|
|
model = cls.from_config(config)
|
|
# model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
|
|
|
model_files = [
|
|
os.path.join(pretrained_model_path, "diffusion_pytorch_model.bin"),
|
|
os.path.join(pretrained_model_path, "diffusion_pytorch_model.safetensors"),
|
|
]
|
|
|
|
model_file = None
|
|
|
|
for fp in model_files:
|
|
if os.path.exists(fp):
|
|
model_file = fp
|
|
|
|
if not model_file:
|
|
raise RuntimeError(f"{model_file} does not exist")
|
|
|
|
if not os.path.isfile(model_file):
|
|
raise RuntimeError(f"{model_file} does not exist")
|
|
|
|
state_dict = load_file(model_file, device="cpu")
|
|
m, u = model.load_state_dict(state_dict, strict=False)
|
|
model = model.to(torch_dtype)
|
|
|
|
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
|
|
total_params = [p.numel() for n, p in model.named_parameters()]
|
|
|
|
if logger is not None:
|
|
logger.info(f"model_file: {model_file}")
|
|
logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
|
logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
|
|
logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M")
|
|
|
|
return model
|