mirror of
https://git.datalinker.icu/ali-vilab/TeaCache
synced 2025-12-09 04:44:23 +08:00
161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
import argparse
|
|
import os
|
|
|
|
import imageio
|
|
import torch
|
|
import torchvision.transforms.functional as F
|
|
import tqdm
|
|
from calculate_lpips import calculate_lpips
|
|
from calculate_psnr import calculate_psnr
|
|
from calculate_ssim import calculate_ssim
|
|
|
|
|
|
def load_videos(directory, video_ids, file_extension):
|
|
videos = []
|
|
for video_id in video_ids:
|
|
video_path = os.path.join(directory, f"{video_id}.{file_extension}")
|
|
if os.path.exists(video_path):
|
|
video = load_video(video_path) # Define load_video based on how videos are stored
|
|
videos.append(video)
|
|
else:
|
|
raise ValueError(f"Video {video_id}.{file_extension} not found in {directory}")
|
|
return videos
|
|
|
|
|
|
def load_video(video_path):
|
|
"""
|
|
Load a video from the given path and convert it to a PyTorch tensor.
|
|
"""
|
|
# Read the video using imageio
|
|
reader = imageio.get_reader(video_path, "ffmpeg")
|
|
|
|
# Extract frames and convert to a list of tensors
|
|
frames = []
|
|
for frame in reader:
|
|
# Convert the frame to a tensor and permute the dimensions to match (C, H, W)
|
|
frame_tensor = torch.tensor(frame).cuda().permute(2, 0, 1)
|
|
frames.append(frame_tensor)
|
|
|
|
# Stack the list of tensors into a single tensor with shape (T, C, H, W)
|
|
video_tensor = torch.stack(frames)
|
|
|
|
return video_tensor
|
|
|
|
|
|
def resize_video(video, target_height, target_width):
|
|
resized_frames = []
|
|
for frame in video:
|
|
resized_frame = F.resize(frame, [target_height, target_width])
|
|
resized_frames.append(resized_frame)
|
|
return torch.stack(resized_frames)
|
|
|
|
|
|
def preprocess_eval_video(eval_video, generated_video_shape):
|
|
T_gen, _, H_gen, W_gen = generated_video_shape
|
|
T_eval, _, H_eval, W_eval = eval_video.shape
|
|
|
|
if T_eval < T_gen:
|
|
raise ValueError(f"Eval video time steps ({T_eval}) are less than generated video time steps ({T_gen}).")
|
|
|
|
if H_eval < H_gen or W_eval < W_gen:
|
|
# Resize the video maintaining the aspect ratio
|
|
resize_height = max(H_gen, int(H_gen * (H_eval / W_eval)))
|
|
resize_width = max(W_gen, int(W_gen * (W_eval / H_eval)))
|
|
eval_video = resize_video(eval_video, resize_height, resize_width)
|
|
# Recalculate the dimensions
|
|
T_eval, _, H_eval, W_eval = eval_video.shape
|
|
|
|
# Center crop
|
|
start_h = (H_eval - H_gen) // 2
|
|
start_w = (W_eval - W_gen) // 2
|
|
cropped_video = eval_video[:T_gen, :, start_h : start_h + H_gen, start_w : start_w + W_gen]
|
|
|
|
return cropped_video
|
|
|
|
|
|
def main(args):
|
|
device = "cuda"
|
|
gt_video_dir = args.gt_video_dir
|
|
generated_video_dir = args.generated_video_dir
|
|
|
|
video_ids = []
|
|
file_extension = "mp4"
|
|
for f in os.listdir(generated_video_dir):
|
|
if f.endswith(f".{file_extension}"):
|
|
video_ids.append(f.replace(f".{file_extension}", ""))
|
|
if not video_ids:
|
|
raise ValueError("No videos found in the generated video dataset. Exiting.")
|
|
|
|
print(f"Find {len(video_ids)} videos")
|
|
prompt_interval = 1
|
|
batch_size = 16
|
|
calculate_lpips_flag, calculate_psnr_flag, calculate_ssim_flag = True, True, True
|
|
|
|
lpips_results = []
|
|
psnr_results = []
|
|
ssim_results = []
|
|
|
|
total_len = len(video_ids) // batch_size + (1 if len(video_ids) % batch_size != 0 else 0)
|
|
|
|
for idx, video_id in enumerate(tqdm.tqdm(range(total_len))):
|
|
gt_videos_tensor = []
|
|
generated_videos_tensor = []
|
|
for i in range(batch_size):
|
|
video_idx = idx * batch_size + i
|
|
if video_idx >= len(video_ids):
|
|
break
|
|
video_id = video_ids[video_idx]
|
|
generated_video = load_video(os.path.join(generated_video_dir, f"{video_id}.{file_extension}"))
|
|
generated_videos_tensor.append(generated_video)
|
|
eval_video = load_video(os.path.join(gt_video_dir, f"{video_id}.{file_extension}"))
|
|
gt_videos_tensor.append(eval_video)
|
|
gt_videos_tensor = (torch.stack(gt_videos_tensor) / 255.0).cpu()
|
|
generated_videos_tensor = (torch.stack(generated_videos_tensor) / 255.0).cpu()
|
|
|
|
if calculate_lpips_flag:
|
|
result = calculate_lpips(gt_videos_tensor, generated_videos_tensor, device=device)
|
|
result = result["value"].values()
|
|
result = sum(result) / len(result)
|
|
lpips_results.append(result)
|
|
|
|
if calculate_psnr_flag:
|
|
result = calculate_psnr(gt_videos_tensor, generated_videos_tensor)
|
|
result = result["value"].values()
|
|
result = sum(result) / len(result)
|
|
psnr_results.append(result)
|
|
|
|
if calculate_ssim_flag:
|
|
result = calculate_ssim(gt_videos_tensor, generated_videos_tensor)
|
|
result = result["value"].values()
|
|
result = sum(result) / len(result)
|
|
ssim_results.append(result)
|
|
|
|
if (idx + 1) % prompt_interval == 0:
|
|
out_str = ""
|
|
for results, name in zip([lpips_results, psnr_results, ssim_results], ["lpips", "psnr", "ssim"]):
|
|
result = sum(results) / len(results)
|
|
out_str += f"{name}: {result:.4f}, "
|
|
print(f"Processed {idx + 1} videos. {out_str[:-2]}")
|
|
|
|
out_str = ""
|
|
for results, name in zip([lpips_results, psnr_results, ssim_results], ["lpips", "psnr", "ssim"]):
|
|
result = sum(results) / len(results)
|
|
out_str += f"{name}: {result:.4f}, "
|
|
out_str = out_str[:-2]
|
|
|
|
# save
|
|
with open(f"./{os.path.basename(generated_video_dir)}.txt", "w+") as f:
|
|
f.write(out_str)
|
|
|
|
print(f"Processed all videos. {out_str}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--gt_video_dir", type=str)
|
|
parser.add_argument("--generated_video_dir", type=str)
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|