[Frontend] Rerank API (Jina- and Cohere-compatible API) (#12376)

Signed-off-by: Kyle Mistele <kyle@mistele.com>
This commit is contained in:
Kyle Mistele 2025-01-26 20:58:45 -06:00 committed by GitHub
parent 72bac73067
commit 0034b09ceb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 552 additions and 11 deletions

View File

@ -50,6 +50,11 @@ In addition, we have the following custom APIs:
- Applicable to all [pooling models](../models/pooling_models.md).
- [Score API](#score-api) (`/score`)
- Only applicable to [cross-encoder models](../models/pooling_models.md) (`--task score`).
- [Re-rank API](#rerank-api) (`/rerank`, `/v1/rerank`, `/v2/rerank`)
- Implements [Jina AI's v1 re-rank API](https://jina.ai/reranker/)
- Also compatible with [Cohere's v1 & v2 re-rank APIs](https://docs.cohere.com/v2/reference/rerank)
- Jina and Cohere's APIs are very similar; Jina's includes extra information in the rerank endpoint's response.
- Only applicable to [cross-encoder models](../models/pooling_models.md) (`--task score`).
(chat-template)=
@ -473,3 +478,90 @@ The following extra parameters are supported:
:start-after: begin-score-extra-params
:end-before: end-score-extra-params
```
(rerank-api)=
### Re-rank API
Our Re-rank API applies a cross-encoder model to predict relevant scores between a single query, and
each of a list of documents. Usually, the score for a sentence pair refers to the similarity between two sentences, on
a scale of 0 to 1.
You can find the documentation for these kind of models at [sbert.net](https://www.sbert.net/docs/package_reference/cross_encoder/cross_encoder.html).
The rerank endpoints support popular re-rank models such as `BAAI/bge-reranker-base` and other models supporting the
`score` task. Additionally, `/rerank`, `/v1/rerank`, and `/v2/rerank`
endpoints are compatible with both [Jina AI's re-rank API interface](https://jina.ai/reranker/) and
[Cohere's re-rank API interface](https://docs.cohere.com/v2/reference/rerank) to ensure compatibility with
popular open-source tools.
Code example: <gh-file:examples/online_serving/jinaai_rerank_client.py>
#### Example Request
Note that the `top_n` request parameter is optional and will default to the length of the `documents` field.
Result documents will be sorted by relevance, and the `index` property can be used to determine original order.
Request:
```bash
curl -X 'POST' \
'http://127.0.0.1:8000/v1/rerank' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"model": "BAAI/bge-reranker-base",
"query": "What is the capital of France?",
"documents": [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.",
"Horses and cows are both animals"
]
}'
```
Response:
```bash
{
"id": "rerank-fae51b2b664d4ed38f5969b612edff77",
"model": "BAAI/bge-reranker-base",
"usage": {
"total_tokens": 56
},
"results": [
{
"index": 1,
"document": {
"text": "The capital of France is Paris."
},
"relevance_score": 0.99853515625
},
{
"index": 0,
"document": {
"text": "The capital of Brazil is Brasilia."
},
"relevance_score": 0.0005860328674316406
}
]
}
```
#### Extra parameters
The following [pooling parameters](#pooling-params) are supported.
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
:language: python
:start-after: begin-rerank-pooling-params
:end-before: end-rerank-pooling-params
```
The following extra parameters are supported:
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
:language: python
:start-after: begin-rerank-extra-params
:end-before: end-rerank-extra-params
```

View File

@ -0,0 +1,32 @@
"""
Example of using the OpenAI entrypoint's rerank API which is compatible with
the Cohere SDK: https://github.com/cohere-ai/cohere-python
run: vllm serve BAAI/bge-reranker-base
"""
import cohere
# cohere v1 client
co = cohere.Client(base_url="http://localhost:8000", api_key="sk-fake-key")
rerank_v1_result = co.rerank(
model="BAAI/bge-reranker-base",
query="What is the capital of France?",
documents=[
"The capital of France is Paris", "Reranking is fun!",
"vLLM is an open-source framework for fast AI serving"
])
print(rerank_v1_result)
# or the v2
co2 = cohere.ClientV2("sk-fake-key", base_url="http://localhost:8000")
v2_rerank_result = co2.rerank(
model="BAAI/bge-reranker-base",
query="What is the capital of France?",
documents=[
"The capital of France is Paris", "Reranking is fun!",
"vLLM is an open-source framework for fast AI serving"
])
print(v2_rerank_result)

View File

@ -0,0 +1,33 @@
"""
Example of using the OpenAI entrypoint's rerank API which is compatible with
Jina and Cohere https://jina.ai/reranker
run: vllm serve BAAI/bge-reranker-base
"""
import json
import requests
url = "http://127.0.0.1:8000/rerank"
headers = {"accept": "application/json", "Content-Type": "application/json"}
data = {
"model":
"BAAI/bge-reranker-base",
"query":
"What is the capital of France?",
"documents": [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.", "Horses and cows are both animals"
]
}
response = requests.post(url, headers=headers, json=data)
# Check the response
if response.status_code == 200:
print("Request successful!")
print(json.dumps(response.json(), indent=2))
else:
print(f"Request failed with status code: {response.status_code}")
print(response.text)

View File

@ -0,0 +1,87 @@
import pytest
import requests
from vllm.entrypoints.openai.protocol import RerankResponse
from ...utils import RemoteOpenAIServer
MODEL_NAME = "BAAI/bge-reranker-base"
@pytest.fixture(scope="module")
def server():
args = ["--enforce-eager", "--max-model-len", "100"]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
def test_rerank_texts(server: RemoteOpenAIServer, model_name: str):
query = "What is the capital of France?"
documents = [
"The capital of Brazil is Brasilia.", "The capital of France is Paris."
]
rerank_response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents,
})
rerank_response.raise_for_status()
rerank = RerankResponse.model_validate(rerank_response.json())
assert rerank.id is not None
assert rerank.results is not None
assert len(rerank.results) == 2
assert rerank.results[0].relevance_score >= 0.9
assert rerank.results[1].relevance_score <= 0.01
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
def test_top_n(server: RemoteOpenAIServer, model_name: str):
query = "What is the capital of France?"
documents = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.", "Cross-encoder models are neat"
]
rerank_response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents,
"top_n": 2
})
rerank_response.raise_for_status()
rerank = RerankResponse.model_validate(rerank_response.json())
assert rerank.id is not None
assert rerank.results is not None
assert len(rerank.results) == 2
assert rerank.results[0].relevance_score >= 0.9
assert rerank.results[1].relevance_score <= 0.01
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
def test_rerank_max_model_len(server: RemoteOpenAIServer, model_name: str):
query = "What is the capital of France?" * 100
documents = [
"The capital of Brazil is Brasilia.", "The capital of France is Paris."
]
rerank_response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents
})
assert rerank_response.status_code == 400
# Assert just a small fragments of the response
assert "Please reduce the length of the input." in \
rerank_response.text

View File

@ -10,12 +10,7 @@ MODEL_NAME = "BAAI/bge-reranker-v2-m3"
@pytest.fixture(scope="module")
def server():
args = [
"--enforce-eager",
# Will be used on tests to compare prompt input length
"--max-model-len",
"100"
]
args = ["--enforce-eager", "--max-model-len", "100"]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server

View File

@ -56,6 +56,7 @@ from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
PoolingChatRequest,
PoolingCompletionRequest,
PoolingRequest, PoolingResponse,
RerankRequest, RerankResponse,
ScoreRequest, ScoreResponse,
TokenizeRequest,
TokenizeResponse,
@ -68,6 +69,7 @@ from vllm.entrypoints.openai.serving_engine import OpenAIServing
from vllm.entrypoints.openai.serving_models import (BaseModelPath,
OpenAIServingModels)
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
from vllm.entrypoints.openai.serving_rerank import JinaAIServingRerank
from vllm.entrypoints.openai.serving_score import OpenAIServingScores
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization)
@ -306,6 +308,10 @@ def score(request: Request) -> Optional[OpenAIServingScores]:
return request.app.state.openai_serving_scores
def rerank(request: Request) -> Optional[JinaAIServingRerank]:
return request.app.state.jinaai_serving_reranking
def tokenization(request: Request) -> OpenAIServingTokenization:
return request.app.state.openai_serving_tokenization
@ -502,6 +508,40 @@ async def create_score_v1(request: ScoreRequest, raw_request: Request):
return await create_score(request, raw_request)
@router.post("/rerank")
@with_cancellation
async def do_rerank(request: RerankRequest, raw_request: Request):
handler = rerank(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Rerank (Score) API")
generator = await handler.do_rerank(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, RerankResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/v1/rerank")
@with_cancellation
async def do_rerank_v1(request: RerankRequest, raw_request: Request):
logger.warning(
"To indicate that the rerank API is not part of the standard OpenAI"
" API, we have located it at `/rerank`. Please update your client"
"accordingly. (Note: Conforms to JinaAI rerank API)")
return await do_rerank(request, raw_request)
@router.post("/v2/rerank")
@with_cancellation
async def do_rerank_v2(request: RerankRequest, raw_request: Request):
return await do_rerank(request, raw_request)
TASK_HANDLERS: Dict[str, Dict[str, tuple]] = {
"generate": {
"messages": (ChatCompletionRequest, create_chat_completion),
@ -512,7 +552,10 @@ TASK_HANDLERS: Dict[str, Dict[str, tuple]] = {
"default": (EmbeddingCompletionRequest, create_embedding),
},
"score": {
"default": (ScoreRequest, create_score),
"default": (RerankRequest, do_rerank)
},
"rerank": {
"default": (RerankRequest, do_rerank)
},
"reward": {
"messages": (PoolingChatRequest, create_pooling),
@ -759,6 +802,12 @@ async def init_app_state(
state.openai_serving_models,
request_logger=request_logger
) if model_config.task == "score" else None
state.jinaai_serving_reranking = JinaAIServingRerank(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger
) if model_config.task == "score" else None
state.openai_serving_tokenization = OpenAIServingTokenization(
engine_client,
model_config,

View File

@ -1018,6 +1018,52 @@ class ScoreRequest(OpenAIBaseModel):
return PoolingParams(additional_data=self.additional_data)
class RerankRequest(OpenAIBaseModel):
model: str
query: str
documents: List[str]
top_n: int = Field(default_factory=lambda: 0)
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
# doc: begin-rerank-pooling-params
additional_data: Optional[Any] = None
# doc: end-rerank-pooling-params
# doc: begin-rerank-extra-params
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
# doc: end-rerank-extra-params
def to_pooling_params(self):
return PoolingParams(additional_data=self.additional_data)
class RerankDocument(BaseModel):
text: str
class RerankResult(BaseModel):
index: int
document: RerankDocument
relevance_score: float
class RerankUsage(BaseModel):
total_tokens: int
class RerankResponse(OpenAIBaseModel):
id: str
model: str
usage: RerankUsage
results: List[RerankResult]
class CompletionLogProbs(OpenAIBaseModel):
text_offset: List[int] = Field(default_factory=list)
token_logprobs: List[Optional[float]] = Field(default_factory=list)

View File

@ -26,7 +26,8 @@ from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DetokenizeRequest,
EmbeddingChatRequest,
EmbeddingCompletionRequest,
ErrorResponse, ScoreRequest,
ErrorResponse, RerankRequest,
ScoreRequest,
TokenizeChatRequest,
TokenizeCompletionRequest)
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
@ -204,9 +205,9 @@ class OpenAIServing:
token_num = len(input_ids)
# Note: EmbeddingRequest and ScoreRequest doesn't have max_tokens
if isinstance(
request,
(EmbeddingChatRequest, EmbeddingCompletionRequest, ScoreRequest)):
if isinstance(request,
(EmbeddingChatRequest, EmbeddingCompletionRequest,
ScoreRequest, RerankRequest)):
operation = "score" if isinstance(request, ScoreRequest) \
else "embedding generation"

View File

@ -0,0 +1,206 @@
import asyncio
from typing import Any, AsyncGenerator, Dict, List, Optional, Union, cast
from fastapi import Request
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.protocol import (ErrorResponse, RerankDocument,
RerankRequest, RerankResponse,
RerankResult, RerankUsage)
from vllm.entrypoints.openai.serving_engine import OpenAIServing
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
from vllm.inputs.data import TokensPrompt
from vllm.logger import init_logger
from vllm.outputs import PoolingRequestOutput, ScoringRequestOutput
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
from vllm.utils import make_async, merge_async_iterators
logger = init_logger(__name__)
class JinaAIServingRerank(OpenAIServing):
def __init__(
self,
engine_client: EngineClient,
model_config: ModelConfig,
models: OpenAIServingModels,
*,
request_logger: Optional[RequestLogger],
) -> None:
super().__init__(engine_client=engine_client,
model_config=model_config,
models=models,
request_logger=request_logger)
async def do_rerank(
self,
request: RerankRequest,
raw_request: Optional[Request] = None
) -> Union[RerankResponse, ErrorResponse]:
"""
Rerank API based on JinaAI's rerank API; implements the same
API interface. Designed for compatibility with off-the-shelf
tooling, since this is a common standard for reranking APIs
See example client implementations at
https://github.com/infiniflow/ragflow/blob/main/rag/llm/rerank_model.py
numerous clients use this standard.
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
model_name = request.model
request_id = f"rerank-{self._base_request_id(raw_request)}"
truncate_prompt_tokens = request.truncate_prompt_tokens
query = request.query
documents = request.documents
request_prompts = []
engine_prompts = []
top_n = request.top_n if request.top_n > 0 else len(documents)
try:
(
lora_request,
prompt_adapter_request,
) = self._maybe_get_adapters(request)
tokenizer = await self.engine_client.get_tokenizer(lora_request)
if prompt_adapter_request is not None:
raise NotImplementedError("Prompt adapter is not supported "
"for scoring models")
if isinstance(tokenizer, MistralTokenizer):
raise ValueError(
"MistralTokenizer not supported for cross-encoding")
if not self.model_config.is_cross_encoder:
raise ValueError("Model is not cross encoder.")
if truncate_prompt_tokens is not None and \
truncate_prompt_tokens > self.max_model_len:
raise ValueError(
f"truncate_prompt_tokens value ({truncate_prompt_tokens}) "
f"is greater than max_model_len ({self.max_model_len})."
f" Please, select a smaller truncation size.")
for doc in documents:
request_prompt = f"{query}{tokenizer.sep_token}{doc}"
tokenization_kwargs: Dict[str, Any] = {}
if truncate_prompt_tokens is not None:
tokenization_kwargs["truncation"] = True
tokenization_kwargs["max_length"] = truncate_prompt_tokens
tokenize_async = make_async(tokenizer.__call__,
executor=self._tokenizer_executor)
prompt_inputs = await tokenize_async(text=query,
text_pair=doc,
**tokenization_kwargs)
input_ids = prompt_inputs["input_ids"]
text_token_prompt = \
self._validate_input(request, input_ids, request_prompt)
engine_prompt = TokensPrompt(
prompt_token_ids=text_token_prompt["prompt_token_ids"],
token_type_ids=prompt_inputs.get("token_type_ids"))
request_prompts.append(request_prompt)
engine_prompts.append(engine_prompt)
except ValueError as e:
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(str(e))
# Schedule the request and get the result generator.
generators: List[AsyncGenerator[PoolingRequestOutput, None]] = []
try:
pooling_params = request.to_pooling_params()
for i, engine_prompt in enumerate(engine_prompts):
request_id_item = f"{request_id}-{i}"
self._log_inputs(request_id_item,
request_prompts[i],
params=pooling_params,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request)
trace_headers = (None if raw_request is None else await
self._get_trace_headers(raw_request.headers))
generator = self.engine_client.encode(
engine_prompt,
pooling_params,
request_id_item,
lora_request=lora_request,
trace_headers=trace_headers,
priority=request.priority,
)
generators.append(generator)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
result_generator = merge_async_iterators(*generators)
num_prompts = len(engine_prompts)
# Non-streaming response
final_res_batch: List[Optional[PoolingRequestOutput]]
final_res_batch = [None] * num_prompts
try:
async for i, res in result_generator:
final_res_batch[i] = res
assert all(final_res is not None for final_res in final_res_batch)
final_res_batch_checked = cast(List[PoolingRequestOutput],
final_res_batch)
response = self.request_output_to_rerank_response(
final_res_batch_checked, request_id, model_name, documents,
top_n)
except asyncio.CancelledError:
return self.create_error_response("Client disconnected")
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
return response
def request_output_to_rerank_response(
self, final_res_batch: List[PoolingRequestOutput], request_id: str,
model_name: str, documents: List[str],
top_n: int) -> RerankResponse:
"""
Convert the output of do_rank to a RerankResponse
"""
results: List[RerankResult] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
classify_res = ScoringRequestOutput.from_base(final_res)
result = RerankResult(
index=idx,
document=RerankDocument(text=documents[idx]),
relevance_score=classify_res.outputs.score,
)
results.append(result)
prompt_token_ids = final_res.prompt_token_ids
num_prompt_tokens += len(prompt_token_ids)
# sort by relevance, then return the top n if set
results.sort(key=lambda x: x.relevance_score, reverse=True)
if top_n < len(documents):
results = results[:top_n]
return RerankResponse(
id=request_id,
model=model_name,
results=results,
usage=RerankUsage(total_tokens=num_prompt_tokens))