[Tests] Tool call tests for openai/gpt-oss-20b (#26237)

Signed-off-by: Debolina Roy <debroy@redhat.com>
This commit is contained in:
Deboleina 2025-12-05 22:03:29 -05:00 committed by GitHub
parent 7b5575fa7d
commit 02a4169193
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 360 additions and 0 deletions

View File

@ -49,6 +49,7 @@ blobfile==3.0.0
# Multi-Modal Models Test
decord==0.6.0
# video processing, required by entrypoints/openai/test_video.py
rapidfuzz==3.12.1
# OpenAI compatibility and testing
gpt-oss==0.0.8

View File

@ -0,0 +1,359 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import jsonschema
import openai
import pytest
import pytest_asyncio
from rapidfuzz import fuzz
from ....utils import RemoteOpenAIServer
MODEL_NAME = "openai/gpt-oss-20b"
@pytest.fixture(scope="module")
def server():
args = [
"--max-model-len",
"8192",
"--enforce-eager",
"--enable-auto-tool-choice",
"--tool-call-parser",
"openai",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
"""Async fixture providing an OpenAI-compatible vLLM client."""
async with server.get_async_client() as async_client:
yield async_client
# ==========================================================
# Tool Definitions
# ==========================================================
TOOLS = [
{
"type": "function",
"function": {
"name": "calculator",
"description": "Performs basic arithmetic calculations.",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": (
"Arithmetic expression to evaluate, e.g. '123 + 456'."
),
}
},
"required": ["expression"],
},
},
},
{
"type": "function",
"function": {
"name": "get_time",
"description": "Retrieves the current local time for a given city.",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "City name, e.g. 'New York'.",
}
},
"required": ["city"],
},
},
},
]
# ==========================================================
# Message Examples
# ==========================================================
MESSAGES_CALC = [
{"role": "user", "content": "Calculate 123 + 456 using the calculator."}
]
MESSAGES_GET_TIME = [
{"role": "user", "content": "What is the current time in New York?"}
]
MESSAGES_MULTIPLE_CALLS = [
{
"role": "system",
"content": (
"You can call multiple tools. "
"When using more than one, return single JSON object with tool_calls array"
"containing each tool call with its function name and arguments. "
"Do not output multiple JSON objects separately."
),
},
{
"role": "user",
"content": "First, calculate 7 * 8 using the calculator. "
"Then, use get_time to tell me the current time in New York.",
},
]
MESSAGES_INVALID_CALL = [
{
"role": "user",
"content": "Can you help with something, "
"but dont actually perform any calculation?",
}
]
# Expected outputs
FUNC_CALC = "calculator"
FUNC_ARGS_CALC = '{"expression":"123 + 456"}'
FUNC_TIME = "get_time"
FUNC_ARGS_TIME = '{"city": "New York"}'
# ==========================================================
# Utility to extract reasoning and tool calls
# ==========================================================
def extract_reasoning_and_calls(chunks: list) -> tuple[str, list[str], list[str]]:
"""
Extract accumulated reasoning text and tool call arguments
from streaming chunks.
"""
reasoning_content: str = ""
tool_calls: dict[int, dict[str, str]] = {}
for chunk in chunks:
choice = getattr(chunk.choices[0], "delta", None)
if not choice:
continue
if hasattr(choice, "reasoning_content") and choice.reasoning_content:
reasoning_content += choice.reasoning_content
for tc in getattr(choice, "tool_calls", []) or []:
idx = getattr(tc, "index", 0)
tool_entry = tool_calls.setdefault(idx, {"name": "", "arguments": ""})
if getattr(tc, "function", None):
func = tc.function
if getattr(func, "name", None):
tool_entry["name"] = func.name
if getattr(func, "arguments", None):
tool_entry["arguments"] += func.arguments
function_names: list[str] = [v["name"] for _, v in sorted(tool_calls.items())]
arguments: list[str] = [v["arguments"] for _, v in sorted(tool_calls.items())]
return reasoning_content, arguments, function_names
# ==========================================================
# Test Scenarios
# ==========================================================
@pytest.mark.asyncio
async def test_calculator_tool_call_and_argument_accuracy(client: openai.AsyncOpenAI):
"""Verify calculator tool call is made and arguments are accurate."""
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_CALC,
tools=TOOLS,
temperature=0.0,
stream=False,
)
message = response.choices[0].message
tool_calls = getattr(message, "tool_calls", [])
assert tool_calls, "No tool calls detected"
calc_call = next((c for c in tool_calls if c.function.name == FUNC_CALC), None)
assert calc_call, "Calculator function not called"
raw_args = calc_call.function.arguments
assert raw_args, "Calculator arguments missing"
assert "123" in raw_args and "456" in raw_args, (
f"Expected values not in raw arguments: {raw_args}"
)
try:
parsed_args = json.loads(raw_args)
except json.JSONDecodeError:
pytest.fail(f"Invalid JSON in calculator arguments: {raw_args}")
expected_expr = "123 + 456"
actual_expr = parsed_args.get("expression", "")
similarity = fuzz.ratio(actual_expr, expected_expr)
assert similarity > 90, (
f"Expression mismatch: expected '{expected_expr}' "
f"got '{actual_expr}' (similarity={similarity}%)"
)
@pytest.mark.asyncio
async def test_streaming_tool_call_get_time_with_reasoning(client: openai.AsyncOpenAI):
"""Verify streamed reasoning and tool call behavior for get_time."""
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_GET_TIME,
tools=TOOLS,
temperature=0.0,
stream=True,
)
chunks = [chunk async for chunk in stream]
reasoning, arguments, function_names = extract_reasoning_and_calls(chunks)
assert FUNC_TIME in function_names, "get_time function not called"
assert any("New York" in arg for arg in arguments), (
f"Expected get_time arguments for New York not found in {arguments}"
)
assert len(reasoning) > 0, "Expected reasoning content missing"
assert any(keyword in reasoning for keyword in ["New York", "time", "current"]), (
f"Reasoning is not relevant to the request: {reasoning}"
)
@pytest.mark.asyncio
async def test_streaming_multiple_tools(client: openai.AsyncOpenAI):
"""Test streamed multi-tool response with reasoning."""
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_MULTIPLE_CALLS,
tools=TOOLS,
temperature=0.0,
stream=True,
)
chunks = [chunk async for chunk in stream]
reasoning, arguments, function_names = extract_reasoning_and_calls(chunks)
try:
assert FUNC_CALC in function_names, (
f"Calculator tool missing — found {function_names}"
)
assert FUNC_TIME in function_names, (
f"Time tool missing — found {function_names}"
)
assert len(reasoning) > 0, "Expected reasoning content in streamed response"
except AssertionError as e:
print(f"ERROR: {e}")
@pytest.mark.asyncio
async def test_invalid_tool_call(client: openai.AsyncOpenAI):
"""
Verify that ambiguous instructions that should not trigger a tool
do not produce any tool calls.
"""
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_INVALID_CALL,
tools=TOOLS,
temperature=0.0,
stream=False,
)
message = response.choices[0].message
assert message is not None, "Expected message in response"
assert hasattr(message, "content"), "Expected 'content' field in message"
tool_calls = getattr(message, "tool_calls", [])
assert not tool_calls, (
f"Model unexpectedly attempted a tool call on invalid input: {tool_calls}"
)
@pytest.mark.asyncio
async def test_tool_call_with_temperature(client: openai.AsyncOpenAI):
"""
Verify model produces valid tool or text output
under non-deterministic sampling.
"""
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_CALC,
tools=TOOLS,
temperature=0.7,
stream=False,
)
message = response.choices[0].message
assert message is not None, "Expected non-empty message in response"
assert message.tool_calls or message.content, (
"Response missing both text and tool calls"
)
print(f"\nTool calls: {message.tool_calls}")
print(f"Text: {message.content}")
@pytest.mark.asyncio
async def test_tool_response_schema_accuracy(client: openai.AsyncOpenAI):
"""Validate that tool call arguments adhere to their declared JSON schema."""
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_MULTIPLE_CALLS,
tools=TOOLS,
temperature=0.0,
)
calls = response.choices[0].message.tool_calls
assert calls, "No tool calls produced"
for call in calls:
func_name = call.function.name
args = json.loads(call.function.arguments)
schema: dict[str, object] | None = None
for tool_entry in TOOLS:
function_def = tool_entry.get("function")
if (
function_def
and isinstance(function_def, dict)
and function_def.get("name") == func_name
):
schema = function_def.get("parameters")
break
assert schema is not None, f"No matching tool schema found for {func_name}"
jsonschema.validate(instance=args, schema=schema)
@pytest.mark.asyncio
async def test_semantic_consistency_with_temperature(client: openai.AsyncOpenAI):
"""Test that temperature variation doesn't cause contradictory reasoning."""
responses = []
for temp in [0.0, 0.5, 1.0]:
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES_CALC,
tools=TOOLS,
temperature=temp,
)
text = (resp.choices[0].message.content or "").strip()
responses.append(text)
# Compare fuzzy similarity between low- and mid-temperature outputs
low_mid_sim = fuzz.ratio(responses[0], responses[1])
assert low_mid_sim > 60, (
f"Semantic drift too large between T=0.0 and T=0.5 ({low_mid_sim}%)"
)