diff --git a/docs/models/supported_models.md b/docs/models/supported_models.md
index 2bffb28d31934..4e43db5b88fad 100644
--- a/docs/models/supported_models.md
+++ b/docs/models/supported_models.md
@@ -800,12 +800,13 @@ These models primarily support the [`LLM.embed`](./pooling_models.md#llmembed) A
The following table lists those that are tested in vLLM.
-| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) |
-|--------------|--------|--------|-------------------|----------------------|---------------------------|
-| `CLIPModel` | CLIP | T / I | `openai/clip-vit-base-patch32`, `openai/clip-vit-large-patch14`, etc. | | |
-| `LlavaNextForConditionalGeneration`C | LLaVA-NeXT-based | T / I | `royokong/e5-v` | | ✅︎ |
-| `Phi3VForCausalLM`C | Phi-3-Vision-based | T + I | `TIGER-Lab/VLM2Vec-Full` | | ✅︎ |
-| `*ForConditionalGeneration`C, `*ForCausalLM`C, etc. | Generative models | \* | N/A | \* | \* |
+| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) | [V1](gh-issue:8779) |
+|--------------|--------|--------|-------------------|----------------------|---------------------------|---------------------|
+| `CLIPModel` | CLIP | T / I | `openai/clip-vit-base-patch32`, `openai/clip-vit-large-patch14`, etc. | | | ✅︎ |
+| `LlavaNextForConditionalGeneration`C | LLaVA-NeXT-based | T / I | `royokong/e5-v` | | ✅︎ | ✅︎ |
+| `Phi3VForCausalLM`C | Phi-3-Vision-based | T + I | `TIGER-Lab/VLM2Vec-Full` | | ✅︎ | ✅︎ |
+| `SiglipModel` | SigLIP | T / I | `google/siglip-base-patch16-224` | | | ✅︎ |
+| `*ForConditionalGeneration`C, `*ForCausalLM`C, etc. | Generative models | \* | N/A | \* | \* | \* |
C Automatically converted into an embedding model via `--convert embed`. ([details](./pooling_models.md#model-conversion))
\* Feature support is the same as that of the original model.
diff --git a/examples/offline_inference/vision_language_pooling.py b/examples/offline_inference/vision_language_pooling.py
index 1ce2cdc436d6a..cf4695c2545fb 100644
--- a/examples/offline_inference/vision_language_pooling.py
+++ b/examples/offline_inference/vision_language_pooling.py
@@ -110,6 +110,53 @@ def run_e5_v(query: Query) -> ModelRequestData:
)
+def run_jinavl_reranker(query: Query) -> ModelRequestData:
+ if query["modality"] != "text+images":
+ raise ValueError(f"Unsupported query modality: '{query['modality']}'")
+
+ engine_args = EngineArgs(
+ model="jinaai/jina-reranker-m0",
+ runner="pooling",
+ max_model_len=32768,
+ trust_remote_code=True,
+ mm_processor_kwargs={
+ "min_pixels": 3136,
+ "max_pixels": 602112,
+ },
+ limit_mm_per_prompt={"image": 1},
+ )
+
+ return ModelRequestData(
+ engine_args=engine_args,
+ query=query["text"],
+ documents=query["image"],
+ )
+
+
+def run_siglip(query: Query) -> ModelRequestData:
+ if query["modality"] == "text":
+ prompt = query["text"]
+ image = None
+ elif query["modality"] == "image":
+ prompt = "" # For image input, make sure that the prompt text is empty
+ image = query["image"]
+ else:
+ modality = query["modality"]
+ raise ValueError(f"Unsupported query modality: '{modality}'")
+
+ engine_args = EngineArgs(
+ model="google/siglip-base-patch16-224",
+ runner="pooling",
+ limit_mm_per_prompt={"image": 1},
+ )
+
+ return ModelRequestData(
+ engine_args=engine_args,
+ prompt=prompt,
+ image=image,
+ )
+
+
def _get_vlm2vec_prompt_image(query: Query, image_token: str):
if query["modality"] == "text":
text = query["text"]
@@ -211,29 +258,6 @@ def run_vlm2vec_qwen2vl(query: Query) -> ModelRequestData:
)
-def run_jinavl_reranker(query: Query) -> ModelRequestData:
- if query["modality"] != "text+images":
- raise ValueError(f"Unsupported query modality: '{query['modality']}'")
-
- engine_args = EngineArgs(
- model="jinaai/jina-reranker-m0",
- runner="pooling",
- max_model_len=32768,
- trust_remote_code=True,
- mm_processor_kwargs={
- "min_pixels": 3136,
- "max_pixels": 602112,
- },
- limit_mm_per_prompt={"image": 1},
- )
-
- return ModelRequestData(
- engine_args=engine_args,
- query=query["text"],
- documents=query["image"],
- )
-
-
def get_query(modality: QueryModality):
if modality == "text":
return TextQuery(modality="text", text="A dog sitting in the grass")
@@ -328,9 +352,10 @@ def run_score(model: str, modality: QueryModality, seed: int | None):
model_example_map = {
"clip": run_clip,
"e5_v": run_e5_v,
+ "jinavl_reranker": run_jinavl_reranker,
+ "siglip": run_siglip,
"vlm2vec_phi3v": run_vlm2vec_phi3v,
"vlm2vec_qwen2vl": run_vlm2vec_qwen2vl,
- "jinavl_reranker": run_jinavl_reranker,
}
diff --git a/examples/online_serving/pooling/openai_chat_embedding_client_for_multimodal.py b/examples/online_serving/pooling/openai_chat_embedding_client_for_multimodal.py
index 25ab865a4ee43..261b810ce5d03 100644
--- a/examples/online_serving/pooling/openai_chat_embedding_client_for_multimodal.py
+++ b/examples/online_serving/pooling/openai_chat_embedding_client_for_multimodal.py
@@ -83,6 +83,109 @@ def run_clip(client: OpenAI, model: str):
print("Text embedding output:", response.data[0].embedding)
+def run_dse_qwen2_vl(client: OpenAI, model: str):
+ """
+ Start the server using:
+
+ vllm serve MrLight/dse-qwen2-2b-mrl-v1 \
+ --runner pooling \
+ --trust-remote-code \
+ --max-model-len 8192 \
+ --chat-template examples/template_dse_qwen2_vl.jinja
+ """
+ response = create_chat_embeddings(
+ client,
+ messages=[
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image_url",
+ "image_url": {
+ "url": image_url,
+ },
+ },
+ {"type": "text", "text": "What is shown in this image?"},
+ ],
+ }
+ ],
+ model=model,
+ encoding_format="float",
+ )
+
+ print("Image embedding output:", response.data[0].embedding)
+
+ # MrLight/dse-qwen2-2b-mrl-v1 requires a placeholder image
+ # of the minimum input size
+ buffer = io.BytesIO()
+ image_placeholder = Image.new("RGB", (56, 56))
+ image_placeholder.save(buffer, "png")
+ buffer.seek(0)
+ image_placeholder = base64.b64encode(buffer.read()).decode("utf-8")
+ response = create_chat_embeddings(
+ client,
+ messages=[
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image_url",
+ "image_url": {
+ "url": f"data:image/jpeg;base64,{image_placeholder}",
+ },
+ },
+ {"type": "text", "text": "Query: What is the weather like today?"},
+ ],
+ }
+ ],
+ model=model,
+ encoding_format="float",
+ )
+
+ print("Text embedding output:", response.data[0].embedding)
+
+
+def run_siglip(client: OpenAI, model: str):
+ """
+ Start the server using:
+
+ vllm serve google/siglip-base-patch16-224 \
+ --runner pooling
+ """
+
+ response = create_chat_embeddings(
+ client,
+ messages=[
+ {
+ "role": "user",
+ "content": [
+ {"type": "image_url", "image_url": {"url": image_url}},
+ ],
+ }
+ ],
+ model=model,
+ encoding_format="float",
+ )
+
+ print("Image embedding output:", response.data[0].embedding)
+
+ response = create_chat_embeddings(
+ client,
+ messages=[
+ {
+ "role": "user",
+ "content": [
+ {"type": "text", "text": "a photo of a cat"},
+ ],
+ }
+ ],
+ model=model,
+ encoding_format="float",
+ )
+
+ print("Text embedding output:", response.data[0].embedding)
+
+
def run_vlm2vec(client: OpenAI, model: str):
"""
Start the server using:
@@ -148,72 +251,11 @@ def run_vlm2vec(client: OpenAI, model: str):
print("Text embedding output:", response.data[0].embedding)
-def run_dse_qwen2_vl(client: OpenAI, model: str):
- """
- Start the server using:
-
- vllm serve MrLight/dse-qwen2-2b-mrl-v1 \
- --runner pooling \
- --trust-remote-code \
- --max-model-len 8192 \
- --chat-template examples/template_dse_qwen2_vl.jinja
- """
- response = create_chat_embeddings(
- client,
- messages=[
- {
- "role": "user",
- "content": [
- {
- "type": "image_url",
- "image_url": {
- "url": image_url,
- },
- },
- {"type": "text", "text": "What is shown in this image?"},
- ],
- }
- ],
- model=model,
- encoding_format="float",
- )
-
- print("Image embedding output:", response.data[0].embedding)
-
- # MrLight/dse-qwen2-2b-mrl-v1 requires a placeholder image
- # of the minimum input size
- buffer = io.BytesIO()
- image_placeholder = Image.new("RGB", (56, 56))
- image_placeholder.save(buffer, "png")
- buffer.seek(0)
- image_placeholder = base64.b64encode(buffer.read()).decode("utf-8")
- response = create_chat_embeddings(
- client,
- messages=[
- {
- "role": "user",
- "content": [
- {
- "type": "image_url",
- "image_url": {
- "url": f"data:image/jpeg;base64,{image_placeholder}",
- },
- },
- {"type": "text", "text": "Query: What is the weather like today?"},
- ],
- }
- ],
- model=model,
- encoding_format="float",
- )
-
- print("Text embedding output:", response.data[0].embedding)
-
-
model_example_map = {
"clip": run_clip,
- "vlm2vec": run_vlm2vec,
"dse_qwen2_vl": run_dse_qwen2_vl,
+ "siglip": run_siglip,
+ "vlm2vec": run_vlm2vec,
}
diff --git a/tests/models/multimodal/pooling/test_siglip.py b/tests/models/multimodal/pooling/test_siglip.py
new file mode 100644
index 0000000000000..f681b4787b697
--- /dev/null
+++ b/tests/models/multimodal/pooling/test_siglip.py
@@ -0,0 +1,137 @@
+# SPDX-License-Identifier: Apache-2.0
+# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
+
+import pytest
+from transformers import SiglipModel
+
+from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner
+from ...utils import check_embeddings_close
+
+HF_TEXT_PROMPTS = [
+ "a photo of a stop sign",
+ "a photo of a cherry blossom",
+]
+
+HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts(
+ {
+ "stop_sign": "",
+ "cherry_blossom": "",
+ }
+)
+
+MODELS = ["google/siglip-base-patch16-224"]
+
+
+def _run_test(
+ hf_runner: type[HfRunner],
+ vllm_runner: type[VllmRunner],
+ input_texts: list[str],
+ input_images: PromptImageInput,
+ model: str,
+ *,
+ dtype: str,
+) -> None:
+ with vllm_runner(
+ model, runner="pooling", dtype=dtype, enforce_eager=True, max_model_len=64
+ ) as vllm_model:
+ vllm_outputs = vllm_model.embed(input_texts, images=input_images)
+
+ with hf_runner(model, dtype=dtype, auto_cls=SiglipModel) as hf_model:
+ all_inputs = hf_model.get_inputs(input_texts, images=input_images)
+
+ all_outputs = []
+ for inputs in all_inputs:
+ inputs = hf_model.wrap_device(inputs)
+
+ if "pixel_values" in inputs:
+ pooled_output = hf_model.model.get_image_features(
+ pixel_values=inputs.pixel_values,
+ ).squeeze(0)
+ else:
+ pooled_output = hf_model.model.get_text_features(
+ input_ids=inputs.input_ids,
+ ).squeeze(0)
+
+ all_outputs.append(pooled_output.tolist())
+
+ hf_outputs = all_outputs
+
+ check_embeddings_close(
+ embeddings_0_lst=hf_outputs,
+ embeddings_1_lst=vllm_outputs,
+ name_0="hf",
+ name_1="vllm",
+ )
+
+
+@pytest.mark.parametrize("model", MODELS)
+@pytest.mark.parametrize("dtype", ["float"])
+def test_models_text(
+ hf_runner,
+ vllm_runner,
+ image_assets,
+ model: str,
+ dtype: str,
+) -> None:
+ input_texts_images = [(text, None) for text in HF_TEXT_PROMPTS]
+ input_texts = [text for text, _ in input_texts_images]
+ input_images = [image for _, image in input_texts_images]
+
+ _run_test(
+ hf_runner,
+ vllm_runner,
+ input_texts,
+ input_images, # type: ignore
+ model,
+ dtype=dtype,
+ )
+
+
+@pytest.mark.parametrize("model", MODELS)
+@pytest.mark.parametrize("dtype", ["float"])
+def test_models_image(
+ hf_runner,
+ vllm_runner,
+ image_assets,
+ model: str,
+ dtype: str,
+) -> None:
+ input_texts_images = [
+ (text, asset.pil_image) for text, asset in zip(HF_IMAGE_PROMPTS, image_assets)
+ ]
+ input_texts = [text for text, _ in input_texts_images]
+ input_images = [image for _, image in input_texts_images]
+
+ _run_test(
+ hf_runner,
+ vllm_runner,
+ input_texts,
+ input_images,
+ model,
+ dtype=dtype,
+ )
+
+
+@pytest.mark.parametrize("model", MODELS)
+@pytest.mark.parametrize("dtype", ["float"])
+def test_models_text_image_no_crash(
+ vllm_runner,
+ image_assets,
+ model: str,
+ dtype: str,
+) -> None:
+ texts = [HF_TEXT_PROMPTS[0]]
+ images = [image_assets[0].pil_image]
+
+ with vllm_runner(
+ model,
+ runner="pooling",
+ dtype=dtype,
+ enforce_eager=True,
+ max_model_len=64,
+ ) as vllm_model:
+ with pytest.raises(ValueError, match="not both"):
+ vllm_model.embed(texts, images=images)
+
+ vllm_model.embed(texts)
+ vllm_model.embed([""], images=images)
diff --git a/tests/models/registry.py b/tests/models/registry.py
index f5072ef7cbadc..8e11ee755bf7b 100644
--- a/tests/models/registry.py
+++ b/tests/models/registry.py
@@ -471,6 +471,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
"TIGER-Lab/VLM2Vec-Full", trust_remote_code=True
),
"Qwen2VLForConditionalGeneration": _HfExamplesInfo("MrLight/dse-qwen2-2b-mrl-v1"),
+ "SiglipModel": _HfExamplesInfo("google/siglip-base-patch16-224"),
"PrithviGeoSpatialMAE": _HfExamplesInfo(
"ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
dtype="float16",
diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py
index 9879c5ba58015..81d4a6bc5f3a7 100644
--- a/vllm/model_executor/models/registry.py
+++ b/vllm/model_executor/models/registry.py
@@ -209,6 +209,7 @@ _EMBEDDING_MODELS = {
),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501
+ "SiglipModel": ("siglip", "SiglipEmbeddingModel"),
# Technically Terratorch models work on images, both in
# input and output. I am adding it here because it piggy-backs on embedding
# models for the time being.
diff --git a/vllm/model_executor/models/siglip.py b/vllm/model_executor/models/siglip.py
index b79dc31cfe3d4..694e06f9fc811 100644
--- a/vllm/model_executor/models/siglip.py
+++ b/vllm/model_executor/models/siglip.py
@@ -4,13 +4,23 @@
within a vision language model."""
import math
-from collections.abc import Iterable
+from collections.abc import Iterable, Mapping
+from functools import cached_property
+from typing import Annotated, Literal
import torch
from torch import nn
-from transformers import SiglipVisionConfig
+from transformers import (
+ BatchFeature,
+ SiglipConfig,
+ SiglipProcessor,
+ SiglipTextConfig,
+ SiglipVisionConfig,
+)
from vllm.attention.layer import MultiHeadAttention
+from vllm.config import VllmConfig
+from vllm.config.multimodal import BaseDummyOptions
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (
@@ -18,20 +28,232 @@ from vllm.model_executor.layers.linear import (
QKVParallelLinear,
RowParallelLinear,
)
+from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
+from vllm.multimodal import MULTIMODAL_REGISTRY
+from vllm.multimodal.inputs import (
+ MultiModalDataDict,
+ MultiModalFieldConfig,
+ MultiModalInputs,
+ MultiModalKwargsItems,
+ MultiModalUUIDDict,
+)
+from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
+from vllm.multimodal.processing import (
+ BaseMultiModalProcessor,
+ BaseProcessingInfo,
+ PromptIndexTargets,
+ PromptReplacement,
+ PromptUpdate,
+)
+from vllm.multimodal.profiling import BaseDummyInputsBuilder
+from vllm.sequence import IntermediateTensors
+from vllm.utils.tensor_schema import TensorSchema, TensorShape
+from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsQuant
+from .interfaces_base import default_pooling_type
+from .utils import AutoWeightsLoader, maybe_prefix
from .vision import (
VisionEncoderInfo,
VisionFeatureSelectStrategy,
+ VisionFeatureSelectStrategyStr,
+ get_num_selected_vision_tokens,
resolve_visual_encoder_outputs,
)
+class SiglipImagePixelInputs(TensorSchema):
+ """
+ Dimensions:
+ - bn: Batch size * number of images
+ - c: Number of channels (3)
+ - h: Height of each image
+ - w: Width of each image
+ """
+
+ type: Literal["pixel_values"]
+ data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
+
+
+_POOLING_TYPE_TO_STRATEGY: dict[str, VisionFeatureSelectStrategyStr] = {
+ "MEAN": "full",
+ "ALL": "full",
+ "CLS": "class",
+}
+
+
+def _get_vision_feature_select_strategy(
+ pooling_type: str,
+) -> VisionFeatureSelectStrategyStr:
+ try:
+ return _POOLING_TYPE_TO_STRATEGY[pooling_type]
+ except KeyError:
+ raise ValueError(
+ f"No feature selection strategy is defined for "
+ f"pooling_type: {pooling_type!r}"
+ ) from None
+
+
+class SiglipProcessingInfo(BaseProcessingInfo):
+ def get_hf_config(self):
+ return self.ctx.get_hf_config(SiglipConfig)
+
+ def get_vision_encoder_info(self):
+ return SiglipEncoderInfo(self.get_hf_config())
+
+ def get_hf_processor(self, **kwargs: object):
+ return self.ctx.get_hf_processor(SiglipProcessor, **kwargs)
+
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
+ return {"image": 1}
+
+ def get_num_image_tokens(
+ self,
+ *,
+ image_width: int,
+ image_height: int,
+ ) -> int:
+ vision_encoder_info = self.get_vision_encoder_info()
+
+ pooler_config = self.ctx.model_config.pooler_config
+ assert pooler_config is not None
+
+ return get_num_selected_vision_tokens(
+ vision_encoder_info.get_num_image_tokens(
+ image_width=image_width,
+ image_height=image_height,
+ ),
+ _get_vision_feature_select_strategy(pooler_config.pooling_type),
+ )
+
+ def get_image_size_with_most_features(self) -> ImageSize:
+ vision_encoder_info = self.get_vision_encoder_info()
+ width = height = vision_encoder_info.get_image_size()
+ return ImageSize(width=width, height=height)
+
+ def get_max_image_tokens(self) -> int:
+ target_width, target_height = self.get_image_size_with_most_features()
+
+ return self.get_num_image_tokens(
+ image_width=target_width, image_height=target_height
+ )
+
+
+class SiglipDummyInputsBuilder(BaseDummyInputsBuilder[SiglipProcessingInfo]):
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
+ return ""
+
+ def get_dummy_mm_data(
+ self,
+ seq_len: int,
+ mm_counts: Mapping[str, int],
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
+ ) -> MultiModalDataDict:
+ num_images = mm_counts.get("image", 0)
+
+ target_width, target_height = self.info.get_image_size_with_most_features()
+
+ image_overrides = mm_options.get("image") if mm_options else None
+
+ return {
+ "image": self._get_dummy_images(
+ width=target_width,
+ height=target_height,
+ num_images=num_images,
+ overrides=image_overrides,
+ )
+ }
+
+
+class SiglipMultiModalProcessor(BaseMultiModalProcessor[SiglipProcessingInfo]):
+ @cached_property
+ def image_token_id(self) -> int:
+ tokenizer = self.info.get_tokenizer()
+ dummy_token_id = 0
+
+ assert dummy_token_id not in tokenizer.all_special_ids
+
+ return dummy_token_id
+
+ def apply(
+ self,
+ prompt: str | list[int],
+ mm_data: MultiModalDataDict,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ tokenization_kwargs: Mapping[str, object] | None = None,
+ *,
+ mm_uuids: MultiModalUUIDDict | None = None,
+ ) -> MultiModalInputs:
+ if prompt and mm_data:
+ raise ValueError(
+ "Siglip accepts text-only or image-only inputs, not both! "
+ "Image-only inputs means passing an image with an empty text "
+ "prompt."
+ )
+
+ if mm_data:
+ # For multi-modal data, the prompt after processing should
+ # only contain the image token
+ tokenization_kwargs = {
+ **(tokenization_kwargs or {}),
+ "add_special_tokens": False,
+ }
+
+ return super().apply(
+ prompt=prompt,
+ mm_data=mm_data,
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
+ tokenization_kwargs=tokenization_kwargs,
+ mm_uuids=mm_uuids,
+ )
+
+ def _hf_processor_applies_updates(
+ self,
+ prompt_text: str,
+ mm_items: MultiModalDataItems,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ tokenization_kwargs: Mapping[str, object],
+ ) -> bool:
+ return False
+
+ def _get_mm_fields_config(
+ self,
+ hf_inputs: BatchFeature,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ ) -> Mapping[str, MultiModalFieldConfig]:
+ return dict(pixel_values=MultiModalFieldConfig.batched("image"))
+
+ def _get_prompt_updates(
+ self,
+ mm_items: MultiModalDataItems,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ out_mm_kwargs: MultiModalKwargsItems,
+ ) -> list[PromptUpdate]:
+ image_token_id = self.image_token_id
+
+ def get_replacement(item_idx: int):
+ images = mm_items.get_items("image", ImageProcessorItems)
+ image_size = images.get_image_size(item_idx)
+
+ num_image_tokens = self.info.get_num_image_tokens(
+ image_width=image_size.width, image_height=image_size.height
+ )
+ return [image_token_id] * num_image_tokens
+
+ return [
+ PromptReplacement(
+ modality="image",
+ target=PromptIndexTargets.start(),
+ replacement=get_replacement,
+ ),
+ ]
+
+
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
def get_num_image_tokens(
self,
@@ -151,8 +373,9 @@ class SiglipVisionEmbeddings(nn.Module):
class SiglipAttention(nn.Module):
def __init__(
self,
- config: SiglipVisionConfig,
+ config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
+ *,
prefix: str = "",
) -> None:
super().__init__()
@@ -195,12 +418,29 @@ class SiglipAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
- ) -> torch.Tensor:
+ ) -> tuple[torch.Tensor, None]:
"""Input shape: Batch x Time x Channel"""
qkv_states, _ = self.qkv_proj(hidden_states)
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
+ needs_unsqueeze = query_states.ndim == 2
+ if needs_unsqueeze:
+ query_states, key_states, value_states = (
+ query_states.unsqueeze(0),
+ key_states.unsqueeze(0),
+ value_states.unsqueeze(0),
+ )
+
out = self.attn(query_states, key_states, value_states)
+
+ if needs_unsqueeze:
+ out, query_states, key_states, value_states = (
+ out.squeeze(0),
+ query_states.squeeze(0),
+ key_states.squeeze(0),
+ value_states.squeeze(0),
+ )
+
attn_output, _ = self.out_proj(out)
return attn_output, None
@@ -209,7 +449,7 @@ class SiglipAttention(nn.Module):
class SiglipMLP(nn.Module):
def __init__(
self,
- config: SiglipVisionConfig,
+ config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
@@ -249,8 +489,9 @@ class SiglipMLP(nn.Module):
class SiglipEncoderLayer(nn.Module):
def __init__(
self,
- config: SiglipVisionConfig,
+ config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
+ *,
prefix: str = "",
) -> None:
super().__init__()
@@ -291,9 +532,10 @@ class SiglipEncoderLayer(nn.Module):
class SiglipEncoder(nn.Module):
def __init__(
self,
- config: SiglipVisionConfig,
+ config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
num_hidden_layers_override: int | None = None,
+ *,
prefix: str = "",
) -> None:
super().__init__()
@@ -335,6 +577,76 @@ class SiglipEncoder(nn.Module):
return hidden_states
+class SiglipTextTransformer(nn.Module):
+ def __init__(
+ self,
+ config: SiglipTextConfig,
+ quant_config: QuantizationConfig | None = None,
+ *,
+ prefix: str = "",
+ ) -> None:
+ super().__init__()
+
+ self.config = config
+ embed_dim = config.hidden_size
+
+ self.embeddings = SiglipTextEmbeddings(config)
+
+ self.encoder = SiglipEncoder(
+ config=config,
+ quant_config=quant_config,
+ prefix=f"{prefix}.encoder",
+ )
+
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.head = nn.Linear(embed_dim, config.projection_size)
+
+ def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
+ return self.embeddings.token_embedding(input_ids)
+
+ def forward(
+ self,
+ input_ids: torch.Tensor | None,
+ position_ids: torch.Tensor,
+ inputs_embeds: torch.Tensor | None = None,
+ ) -> torch.Tensor:
+ hidden_states = self.embeddings(input_ids, position_ids, inputs_embeds)
+
+ last_hidden_state = self.encoder(
+ inputs_embeds=hidden_states, return_all_hidden_states=False
+ )
+
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
+
+ return last_hidden_state
+
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
+ stacked_params_mapping = [
+ # (param_name, shard_name, shard_id)
+ ("qkv_proj", "q_proj", "q"),
+ ("qkv_proj", "k_proj", "k"),
+ ("qkv_proj", "v_proj", "v"),
+ ]
+ params_dict = dict(self.named_parameters())
+ loaded_params: set[str] = set()
+
+ for name, loaded_weight in weights:
+ for param_name, weight_name, shard_id in stacked_params_mapping:
+ if weight_name not in name:
+ continue
+ name = name.replace(weight_name, param_name)
+ param = params_dict[name]
+ weight_loader = param.weight_loader
+ weight_loader(param, loaded_weight, shard_id)
+ break
+ else:
+ param = params_dict[name]
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
+ weight_loader(param, loaded_weight)
+ loaded_params.add(name)
+ return loaded_params
+
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
@@ -357,8 +669,9 @@ class SiglipMultiheadAttentionPoolingHead(nn.Module):
)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
- batch_size = hidden_state.shape[0]
- probe = self.probe.repeat(batch_size, 1, 1)
+ batch_size = hidden_state.size(0)
+
+ probe = self.probe.expand(batch_size, -1, -1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
@@ -367,7 +680,9 @@ class SiglipMultiheadAttentionPoolingHead(nn.Module):
hidden_state = self.mlp(hidden_state)
hidden_state += residual
- return hidden_state[:, 0]
+ pooled = hidden_state[:, 0]
+
+ return pooled.unsqueeze(1)
class SiglipVisionTransformer(nn.Module):
@@ -420,6 +735,14 @@ class SiglipVisionTransformer(nn.Module):
prefix=f"{prefix}.head",
)
+ @property
+ def dtype(self):
+ return next(self.parameters()).dtype
+
+ @property
+ def device(self):
+ return next(self.parameters()).device
+
def forward(
self,
pixel_values: torch.Tensor,
@@ -432,7 +755,6 @@ class SiglipVisionTransformer(nn.Module):
pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
-
# Produces either the last layer output or all of the hidden states,
# depending on if we have select_layers or not
encoder_outputs = self.encoder(
@@ -440,21 +762,60 @@ class SiglipVisionTransformer(nn.Module):
return_all_hidden_states=select_layers is not None,
)
- # Handle post-norm (if applicable) and stacks feature layers if needed
+ if self.post_layernorm is not None:
+ encoder_outputs = self.post_layernorm(encoder_outputs)
+
+ if self.use_head:
+ encoder_outputs = self.head(encoder_outputs)
+
+ # stacks feature layers if needed
encoder_outputs = resolve_visual_encoder_outputs(
encoder_outputs,
- self.post_layernorm,
+ None,
select_layers=select_layers,
max_possible_layers=self.config.num_hidden_layers,
feature_select_strategy=feature_select_strategy,
)
- # TODO: add this back when pooled_output is used in inference.
- # if self.use_head:
- # pooled_output = self.head(encoder_outputs)
-
return encoder_outputs
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
+ stacked_params_mapping = [
+ # (param_name, shard_name, shard_id)
+ ("qkv_proj", "q_proj", "q"),
+ ("qkv_proj", "k_proj", "k"),
+ ("qkv_proj", "v_proj", "v"),
+ ]
+ params_dict = dict(self.named_parameters())
+ loaded_params: set[str] = set()
+ layer_count = len(self.encoder.layers)
+
+ for name, loaded_weight in weights:
+ # post_layernorm is not needed in SiglipVisionTransformer
+ if name.startswith("post_layernorm") and self.post_layernorm is None:
+ continue
+
+ # omit layers when num_hidden_layers_override is set
+ if name.startswith("encoder.layers"):
+ layer_idx = int(name.split(".")[2])
+ if layer_idx >= layer_count:
+ continue
+
+ for param_name, weight_name, shard_id in stacked_params_mapping:
+ if weight_name not in name:
+ continue
+ name = name.replace(weight_name, param_name)
+ param = params_dict[name]
+ weight_loader = param.weight_loader
+ weight_loader(param, loaded_weight, shard_id)
+ break
+ else:
+ param = params_dict[name]
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
+ weight_loader(param, loaded_weight)
+ loaded_params.add(name)
+ return loaded_params
+
class SiglipVisionModel(nn.Module):
config_class = SiglipVisionConfig
@@ -484,7 +845,11 @@ class SiglipVisionModel(nn.Module):
@property
def dtype(self):
- return self.get_input_embeddings().weight.dtype
+ return self.vision_model.dtype
+
+ @property
+ def device(self):
+ return self.vision_model.device
def forward(
self,
@@ -555,3 +920,214 @@ class SiglipVisionModel(nn.Module):
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
+
+
+# Adapted from: https://github.com/huggingface/transformers/blob/v4.54.1/src/transformers/models/siglip/modeling_siglip.py#L200
+class SiglipTextEmbeddings(nn.Module):
+ def __init__(self, config: SiglipTextConfig):
+ super().__init__()
+ self.config = config
+
+ self.token_embedding = VocabParallelEmbedding(
+ config.vocab_size, config.hidden_size
+ )
+
+ self.position_embedding = VocabParallelEmbedding(
+ config.max_position_embeddings, config.hidden_size
+ )
+
+ self.register_buffer(
+ "position_ids",
+ torch.arange(config.max_position_embeddings).expand((1, -1)),
+ persistent=False,
+ )
+
+ def forward(
+ self,
+ input_ids: torch.Tensor | None,
+ position_ids: torch.Tensor,
+ inputs_embeds: torch.Tensor | None = None,
+ ) -> torch.Tensor:
+ if inputs_embeds is None:
+ inputs_embeds = self.token_embedding(input_ids)
+
+ position_embeddings = self.position_embedding(position_ids)
+ embeddings = inputs_embeds + position_embeddings
+ return embeddings
+
+
+# Assume EOS token corresponds to CLS token in text model
+@default_pooling_type("CLS")
+@MULTIMODAL_REGISTRY.register_processor(
+ SiglipMultiModalProcessor,
+ info=SiglipProcessingInfo,
+ dummy_inputs=SiglipDummyInputsBuilder,
+)
+class SiglipEmbeddingModel(nn.Module, SupportsMultiModal, SupportsQuant):
+ is_pooling_model = True
+
+ packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
+ merge_by_field_config = True
+
+ @classmethod
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
+ if modality.startswith("image"):
+ return None
+
+ raise ValueError("Only image modality is supported")
+
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
+ super().__init__()
+
+ config: SiglipConfig = vllm_config.model_config.hf_config
+ quant_config = vllm_config.quant_config
+ multimodal_config = vllm_config.model_config.multimodal_config
+ self.config = config
+ self.multimodal_config = multimodal_config
+
+ if hasattr(config, "num_labels"):
+ config.num_labels = 0
+
+ text_config = config.text_config
+ vision_config = config.vision_config
+
+ self.text_embed_dim = text_config.hidden_size
+ self.vision_embed_dim = vision_config.hidden_size
+
+ self.text_model = SiglipTextTransformer(
+ text_config,
+ quant_config=quant_config,
+ prefix=maybe_prefix(prefix, "text_model"),
+ )
+ self.vision_model = SiglipVisionTransformer(
+ vision_config,
+ quant_config=quant_config,
+ prefix=maybe_prefix(prefix, "vision_model"),
+ )
+
+ self.text_projection_size = text_config.projection_size
+
+ pooler_config = vllm_config.model_config.pooler_config
+ assert pooler_config is not None
+ self.pooler_config = pooler_config
+
+ self.pooler = DispatchPooler(
+ {
+ "token_embed": Pooler.for_token_embed(pooler_config),
+ "embed": Pooler.for_embed(pooler_config),
+ }
+ )
+
+ self._is_text_input = True
+
+ def get_text_features(
+ self,
+ input_ids: torch.Tensor | None,
+ position_ids: torch.Tensor,
+ inputs_embeds: torch.Tensor | None = None,
+ ) -> torch.Tensor:
+ last_hidden_state = self.text_model(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ )
+ text_features = self.text_model.head(last_hidden_state)
+ # Flip to extract CLS token (first token after reversal) for pooling
+ text_features = text_features.flip(0)
+ return text_features
+
+ def get_image_features(
+ self,
+ pixel_values: torch.Tensor,
+ feature_select_strategy: VisionFeatureSelectStrategy | None = None,
+ ) -> torch.Tensor:
+ if feature_select_strategy is None:
+ feature_select_strategy = _get_vision_feature_select_strategy(
+ self.pooler_config.pooling_type
+ )
+
+ pooled_output = self.vision_model(
+ pixel_values=pixel_values,
+ select_layers=None,
+ feature_select_strategy=feature_select_strategy,
+ )
+
+ return pooled_output
+
+ def _parse_and_validate_image_input(
+ self, **kwargs: object
+ ) -> SiglipImagePixelInputs | None:
+ pixel_values = kwargs.pop("pixel_values", None)
+ if pixel_values is None:
+ return None
+
+ expected_h = expected_w = self.config.vision_config.image_size
+ return SiglipImagePixelInputs(
+ type="pixel_values",
+ data=pixel_values,
+ resolve_bindings={"h": expected_h, "w": expected_w},
+ )
+
+ def _process_image_inputs(self, inputs: SiglipImagePixelInputs) -> torch.Tensor:
+ pixel_values = inputs["data"]
+
+ return self.get_image_features(pixel_values)
+
+ def get_language_model(self) -> torch.nn.Module:
+ return self.text_model
+
+ def get_input_embeddings(
+ self,
+ input_ids: torch.Tensor,
+ multimodal_embeddings: MultiModalEmbeddings | None = None,
+ *,
+ is_multimodal: torch.Tensor | None = None,
+ handle_oov_mm_token: bool = False,
+ ) -> torch.Tensor:
+ self._is_text_input = (
+ multimodal_embeddings is None or len(multimodal_embeddings) == 0
+ )
+
+ if multimodal_embeddings is None or is_multimodal is None:
+ return super().get_input_embeddings(input_ids)
+
+ return super().get_input_embeddings(
+ input_ids,
+ multimodal_embeddings=multimodal_embeddings,
+ is_multimodal=is_multimodal,
+ handle_oov_mm_token=handle_oov_mm_token,
+ )
+
+ def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
+ image_input = self._parse_and_validate_image_input(**kwargs)
+ if image_input is None:
+ return []
+
+ vision_embeddings = self._process_image_inputs(image_input)
+ return vision_embeddings
+
+ def forward(
+ self,
+ input_ids: torch.Tensor | None,
+ positions: torch.Tensor,
+ intermediate_tensors: IntermediateTensors | None = None,
+ inputs_embeds: torch.Tensor | None = None,
+ **kwargs: object,
+ ) -> torch.Tensor:
+ if intermediate_tensors is not None:
+ raise RuntimeError("PP is not supported for this model")
+
+ # Multimodal inputs (image embeddings)
+ if not self._is_text_input:
+ return inputs_embeds
+
+ return self.get_text_features(input_ids, positions, inputs_embeds)
+
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
+ loader = AutoWeightsLoader(
+ self,
+ skip_substrs=[".position_ids"],
+ ignore_unexpected_prefixes=["logit_scale.", "logit_bias."],
+ )
+
+ return loader.load_weights(weights)
diff --git a/vllm/transformers_utils/chat_templates/registry.py b/vllm/transformers_utils/chat_templates/registry.py
index dbb4ffb675b8b..3bdbe1d0a67b6 100644
--- a/vllm/transformers_utils/chat_templates/registry.py
+++ b/vllm/transformers_utils/chat_templates/registry.py
@@ -31,14 +31,15 @@ def _get_minicpmv_chat_template_fallback(tokenizer_name_or_path: str) -> Path |
_MODEL_TYPE_TO_CHAT_TEMPLATE_FALLBACK: dict[str, ChatTemplatePath] = {
"blip-2": CHAT_TEMPLATES_DIR / "template_blip2.jinja",
- "clip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"chameleon": CHAT_TEMPLATES_DIR / "template_basic.jinja",
- "deepseek_vl_v2": CHAT_TEMPLATES_DIR / "template_deepseek_vl2.jinja",
+ "clip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"deepseek_ocr": CHAT_TEMPLATES_DIR / "template_deepseek_ocr.jinja",
+ "deepseek_vl_v2": CHAT_TEMPLATES_DIR / "template_deepseek_vl2.jinja",
"fuyu": CHAT_TEMPLATES_DIR / "template_fuyu.jinja",
"minicpmv": _get_minicpmv_chat_template_fallback,
"paligemma": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"qwen": _get_qwen_chat_template_fallback,
+ "siglip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
}