mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:54:56 +08:00
Migrate KimiVLImagePixelInputs to TensorSchema (#21769)
Signed-off-by: Benji Beck <benjibeck@meta.com> Co-authored-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
parent
d1bf1b9711
commit
05fae02175
@ -46,7 +46,7 @@ import copy
|
||||
import math
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Literal, Optional, TypedDict, Union
|
||||
from typing import Annotated, Any, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -79,6 +79,7 @@ from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import KimiVLConfig, MoonViTConfig
|
||||
from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekV2Config
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .utils import is_pp_missing_parameter, maybe_prefix
|
||||
|
||||
@ -118,15 +119,22 @@ class KimiVLMultiModalProjector(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class KimiVLImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values"]
|
||||
pixel_values: Union[torch.Tensor, list[torch.Tensor]]
|
||||
class KimiVLImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Shape:`(num_patches, num_channels, patch_size, patch_size)`
|
||||
Dimensions:
|
||||
- nc: Number of channels
|
||||
- np: Number of patches
|
||||
- ps: Patch size
|
||||
- ni: Number of images
|
||||
"""
|
||||
type: Literal["pixel_values"] = "pixel_values"
|
||||
|
||||
image_grid_hws: torch.Tensor
|
||||
"""Shape:`(num_images, 2)`"""
|
||||
pixel_values: Annotated[
|
||||
Union[torch.Tensor, list[torch.Tensor]],
|
||||
TensorShape("np", 3, "ps", "ps"),
|
||||
]
|
||||
|
||||
image_grid_hws: Annotated[torch.Tensor, TensorShape("ni", 2)]
|
||||
|
||||
|
||||
# TODO: support embeds too
|
||||
@ -348,8 +356,6 @@ class KimiVLForConditionalGeneration(nn.Module, SupportsMultiModal):
|
||||
pixel_values = pixel_values.reshape(-1, num_channels, patch_size,
|
||||
patch_size)
|
||||
pixel_values = pixel_values.to(self.vision_tower.dtype)
|
||||
# image_grid_hws.shape = (N, 2)
|
||||
assert image_grid_hws.ndim == 2, f"unexpected shape for image_grid_hws: {image_grid_hws.shape}"
|
||||
|
||||
return KimiVLImagePixelInputs(
|
||||
type="pixel_values",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user