mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 23:06:10 +08:00
Add renderer-based prompt processing for embedding and classification endpoints (#24356)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
This commit is contained in:
parent
105d3d62ef
commit
0661cb9df3
@ -73,17 +73,11 @@ async def test_zero_truncation_size(client: openai.AsyncOpenAI):
|
||||
"truncate_prompt_tokens": truncation_size
|
||||
}
|
||||
|
||||
with pytest.raises(openai.BadRequestError) as err:
|
||||
await client.post(path="embeddings", cast_to=object, body={**kwargs})
|
||||
response = await client.post(path="embeddings",
|
||||
cast_to=object,
|
||||
body={**kwargs})
|
||||
|
||||
assert err.value.status_code == 400
|
||||
error_details = err.value.response.json()["error"]
|
||||
|
||||
assert error_details["type"] == "BadRequestError"
|
||||
assert "This model's maximum context length is" in error_details["message"]
|
||||
assert "tokens in the input for embedding generation" in error_details[
|
||||
"message"]
|
||||
assert "Please reduce the length of the input" in error_details["message"]
|
||||
assert response["usage"]["prompt_tokens"] == truncation_size
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@ -130,6 +130,23 @@ class TestRenderPrompt:
|
||||
assert call_args.kwargs["truncation"] is True
|
||||
assert call_args.kwargs["max_length"] == 50
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_truncation_negative(self, renderer, mock_async_tokenizer):
|
||||
# Test that negative truncation uses model's max_model_len
|
||||
mock_async_tokenizer.return_value = MockTokenizerResult(
|
||||
[101, 7592, 2088]) # Truncated to max_model_len
|
||||
renderer.async_tokenizer_pool[
|
||||
renderer.tokenizer] = mock_async_tokenizer
|
||||
|
||||
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
|
||||
max_length=200,
|
||||
truncate_prompt_tokens=-1)
|
||||
|
||||
assert len(results) == 1
|
||||
call_args = mock_async_tokenizer.call_args
|
||||
assert call_args.kwargs["truncation"] is True
|
||||
assert call_args.kwargs["max_length"] == 100 # model's max_model_len
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_token_truncation_last_elements(self, renderer):
|
||||
# Test that token truncation keeps the last N elements
|
||||
|
||||
@ -54,14 +54,11 @@ class ClassificationMixin(OpenAIServing):
|
||||
ctx.tokenizer = await self.engine_client.get_tokenizer(
|
||||
ctx.lora_request)
|
||||
|
||||
(
|
||||
ctx.request_prompts,
|
||||
ctx.engine_prompts,
|
||||
) = await self._preprocess_completion(
|
||||
ctx.request,
|
||||
ctx.tokenizer,
|
||||
ctx.request.input,
|
||||
)
|
||||
renderer = self._get_renderer(ctx.tokenizer)
|
||||
ctx.engine_prompts = await renderer.render_prompt(
|
||||
prompt_or_prompts=ctx.request.input,
|
||||
max_length=self.max_model_len,
|
||||
truncate_prompt_tokens=ctx.request.truncate_prompt_tokens)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
@ -24,7 +24,6 @@ from vllm.entrypoints.openai.protocol import (EmbeddingChatRequest,
|
||||
ErrorResponse, UsageInfo)
|
||||
from vllm.entrypoints.openai.serving_engine import (EmbeddingServeContext,
|
||||
OpenAIServing,
|
||||
RequestPrompt,
|
||||
ServeContext,
|
||||
TextTokensPrompt)
|
||||
# yapf: enable
|
||||
@ -79,11 +78,12 @@ class EmbeddingMixin(OpenAIServing):
|
||||
|
||||
tokenizer = await self.engine_client.get_tokenizer(ctx.lora_request
|
||||
)
|
||||
renderer = self._get_renderer(tokenizer)
|
||||
|
||||
if isinstance(ctx.request, EmbeddingChatRequest):
|
||||
(
|
||||
_,
|
||||
ctx.request_prompts,
|
||||
_,
|
||||
ctx.engine_prompts,
|
||||
) = await self._preprocess_chat(
|
||||
ctx.request,
|
||||
@ -98,13 +98,18 @@ class EmbeddingMixin(OpenAIServing):
|
||||
add_special_tokens=ctx.request.add_special_tokens,
|
||||
)
|
||||
else:
|
||||
(ctx.request_prompts,
|
||||
ctx.engine_prompts) = await self._preprocess_completion(
|
||||
ctx.request,
|
||||
tokenizer,
|
||||
ctx.request.input,
|
||||
add_special_tokens=ctx.request.add_special_tokens,
|
||||
)
|
||||
# Set max_length based on chunked processing capability
|
||||
if self._should_use_chunked_processing(ctx.request):
|
||||
max_length = None
|
||||
else:
|
||||
max_length = self.max_embed_len or self.max_model_len
|
||||
|
||||
ctx.engine_prompts = await renderer.render_prompt(
|
||||
prompt_or_prompts=ctx.request.input,
|
||||
max_length=max_length,
|
||||
truncate_prompt_tokens=ctx.request.truncate_prompt_tokens,
|
||||
add_special_tokens=ctx.request.add_special_tokens,
|
||||
)
|
||||
return None
|
||||
except (ValueError, TypeError) as e:
|
||||
logger.exception("Error in preprocessing prompt inputs")
|
||||
@ -286,7 +291,6 @@ class EmbeddingMixin(OpenAIServing):
|
||||
self,
|
||||
ctx: EmbeddingServeContext,
|
||||
engine_prompt: Union[EngineTokensPrompt, EngineEmbedsPrompt],
|
||||
request_prompt: RequestPrompt,
|
||||
pooling_params: PoolingParams,
|
||||
trace_headers: Optional[Mapping[str, str]],
|
||||
prompt_index: int,
|
||||
@ -295,7 +299,7 @@ class EmbeddingMixin(OpenAIServing):
|
||||
request_id_item = f"{ctx.request_id}-{prompt_index}"
|
||||
|
||||
self._log_inputs(request_id_item,
|
||||
request_prompt,
|
||||
engine_prompt,
|
||||
params=pooling_params,
|
||||
lora_request=ctx.lora_request)
|
||||
|
||||
@ -353,20 +357,14 @@ class EmbeddingMixin(OpenAIServing):
|
||||
return self.create_error_response(
|
||||
"Engine prompts not available")
|
||||
|
||||
if ctx.request_prompts is None:
|
||||
return self.create_error_response(
|
||||
"Request prompts not available")
|
||||
|
||||
max_pos_embeddings = self._get_max_position_embeddings()
|
||||
|
||||
for i, engine_prompt in enumerate(ctx.engine_prompts):
|
||||
request_prompt = ctx.request_prompts[i]
|
||||
|
||||
# Check if this specific prompt needs chunked processing
|
||||
if self._is_text_tokens_prompt(request_prompt):
|
||||
if self._is_text_tokens_prompt(engine_prompt):
|
||||
# Cast to TextTokensPrompt since we've verified
|
||||
# prompt_token_ids
|
||||
text_tokens_prompt = cast(TextTokensPrompt, request_prompt)
|
||||
text_tokens_prompt = cast(TextTokensPrompt, engine_prompt)
|
||||
if (len(text_tokens_prompt["prompt_token_ids"])
|
||||
> max_pos_embeddings):
|
||||
# Use chunked processing for this prompt
|
||||
@ -382,8 +380,7 @@ class EmbeddingMixin(OpenAIServing):
|
||||
Union[EngineTokensPrompt, EngineEmbedsPrompt],
|
||||
engine_prompt)
|
||||
generator = await self._create_single_prompt_generator(
|
||||
ctx, engine_prompt_typed, request_prompt, pooling_params,
|
||||
trace_headers, i)
|
||||
ctx, engine_prompt_typed, pooling_params, trace_headers, i)
|
||||
generators.append(generator)
|
||||
|
||||
from vllm.utils import merge_async_iterators
|
||||
@ -419,10 +416,6 @@ class EmbeddingMixin(OpenAIServing):
|
||||
if not use_chunked:
|
||||
return await super()._collect_batch(ctx=ctx)
|
||||
|
||||
if ctx.request_prompts is None:
|
||||
return self.create_error_response(
|
||||
"Request prompts not available")
|
||||
|
||||
if ctx.result_generator is None:
|
||||
return self.create_error_response(
|
||||
"Result generator not available")
|
||||
@ -538,7 +531,7 @@ class EmbeddingMixin(OpenAIServing):
|
||||
data=final_embedding)
|
||||
|
||||
# Get original prompt token IDs for this prompt
|
||||
original_prompt = ctx.request_prompts[prompt_idx]
|
||||
original_prompt = ctx.engine_prompts[prompt_idx]
|
||||
if not self._is_text_tokens_prompt(original_prompt):
|
||||
return self.create_error_response(
|
||||
f"Chunked prompt {prompt_idx} is not a "
|
||||
|
||||
@ -368,23 +368,20 @@ class OpenAIServing:
|
||||
for i, engine_prompt in enumerate(ctx.engine_prompts):
|
||||
request_id_item = f"{ctx.request_id}-{i}"
|
||||
|
||||
if ctx.request_prompts is None:
|
||||
return self.create_error_response(
|
||||
"Request prompts not available")
|
||||
|
||||
self._log_inputs(
|
||||
request_id_item,
|
||||
ctx.request_prompts[i],
|
||||
params=pooling_params,
|
||||
lora_request=ctx.lora_request,
|
||||
)
|
||||
|
||||
# Mypy has an existing bug related to inferring the variance of
|
||||
# TypedDicts with `builtins.enumerate`:
|
||||
# https://github.com/python/mypy/issues/8586#issuecomment-2867698435
|
||||
engine_prompt = cast(
|
||||
Union[EngineTokensPrompt, EngineEmbedsPrompt],
|
||||
engine_prompt)
|
||||
|
||||
self._log_inputs(
|
||||
request_id_item,
|
||||
engine_prompt,
|
||||
params=pooling_params,
|
||||
lora_request=ctx.lora_request,
|
||||
)
|
||||
|
||||
generator = self.engine_client.encode(
|
||||
engine_prompt,
|
||||
pooling_params,
|
||||
|
||||
@ -108,10 +108,15 @@ class CompletionRenderer(BaseRenderer):
|
||||
for detailed parameter documentation.
|
||||
"""
|
||||
if truncate_prompt_tokens is not None:
|
||||
if max_length is not None:
|
||||
assert 0 <= truncate_prompt_tokens <= max_length
|
||||
if truncate_prompt_tokens == 0:
|
||||
return []
|
||||
if truncate_prompt_tokens < 0:
|
||||
truncate_prompt_tokens = self.model_config.max_model_len
|
||||
if max_length is not None and truncate_prompt_tokens > max_length:
|
||||
raise ValueError(
|
||||
f"truncate_prompt_tokens ({truncate_prompt_tokens}) "
|
||||
f"cannot be greater than max_length ({max_length}). "
|
||||
f"Please select a smaller truncation size.")
|
||||
|
||||
# Parse and batch the input prompts
|
||||
batch_inputs = parse_and_batch_prompt(prompt_or_prompts)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user