mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 13:04:59 +08:00
[EPLB] Reduce EPLB Inference Overhead (#24573)
Signed-off-by: Bowen Wang <abmfy@icloud.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
This commit is contained in:
parent
175811e3b5
commit
06a41334c7
@ -1017,6 +1017,79 @@ def grouped_topk(
|
||||
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
|
||||
|
||||
|
||||
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
|
||||
def eplb_map_to_physical_and_record(
|
||||
topk_ids: torch.Tensor,
|
||||
expert_load_view: torch.Tensor,
|
||||
logical_to_physical_map: torch.Tensor,
|
||||
logical_replica_count: torch.Tensor,
|
||||
indices_type: Optional[torch.dtype] = None) -> torch.Tensor:
|
||||
'''
|
||||
Map the logical expert ids to physical expert ids
|
||||
and record the expert load metrics.
|
||||
|
||||
This will select a pseudo-random replica for each logical expert.
|
||||
Only used for EPLB.
|
||||
|
||||
Args:
|
||||
topk_ids: The logical expert ids.
|
||||
expert_load_view: The expert load view.
|
||||
logical_to_physical_map: The logical to physical map.
|
||||
logical_replica_count: The logical replica count.
|
||||
indices_type: The indices type.
|
||||
|
||||
Returns:
|
||||
The physical expert ids.
|
||||
'''
|
||||
|
||||
# 1. Convert the logical expert ids to physical expert ids
|
||||
# Directly select a random replica for each logical expert
|
||||
|
||||
# In case `indices_type` is not `torch.long` or `torch.int`,
|
||||
# e.g. `torch.uint32` as required by dispatch/combine kernels
|
||||
topk_ids_long = topk_ids.long()
|
||||
# Use (token position) modulo (replica count)
|
||||
# to deterministically choose a replica
|
||||
replica_count = logical_replica_count[topk_ids_long]
|
||||
# Flatten-position based index, reshaped back to `topk_ids` shape
|
||||
pos_indices = torch.arange(topk_ids.numel(),
|
||||
device=topk_ids.device,
|
||||
dtype=torch.long).reshape_as(topk_ids)
|
||||
# Compute pseudo-random indices by modulo
|
||||
replica_indices = (pos_indices % replica_count).unsqueeze(-1)
|
||||
physical_ids = logical_to_physical_map[topk_ids_long].gather(
|
||||
-1, replica_indices).squeeze(-1)
|
||||
|
||||
topk_ids = physical_ids
|
||||
|
||||
# 2. Record expert load metrics.
|
||||
|
||||
# TODO(bowen): When using `FusedMoEModularKernel`, this
|
||||
# can be done in a more unified way, since
|
||||
# `FusedMoEPrepareAndFinalize` will return the expert
|
||||
# token count, in some cases directly from the kernel.
|
||||
# However, now there are many code paths not using
|
||||
# the modular kernel, e.g. calling `fused_experts`,
|
||||
# so we decide to keep the logic here.
|
||||
#
|
||||
# If later refactor moved all the MoE kernel calls
|
||||
# to the modular kernel, we can move this logic there
|
||||
# to achieve better efficiency.
|
||||
|
||||
# `expert_load_view`: (num_physical_experts,)
|
||||
|
||||
# `torch.bincount` is not compilable, so use `scatter_add_` instead.
|
||||
topk_ids_flatten = topk_ids.flatten()
|
||||
expert_load_view.scatter_add_(
|
||||
dim=0,
|
||||
index=topk_ids_flatten.long(),
|
||||
src=torch.ones_like(topk_ids_flatten).to(expert_load_view))
|
||||
|
||||
if indices_type is not None:
|
||||
topk_ids = topk_ids.to(dtype=indices_type)
|
||||
return topk_ids
|
||||
|
||||
|
||||
def fused_grouped_topk(
|
||||
hidden_states: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
|
||||
@ -43,7 +43,8 @@ from vllm.v1.worker.ubatching import dbo_current_ubatch_id
|
||||
|
||||
if current_platform.is_cuda_alike():
|
||||
from .fused_batched_moe import BatchedTritonExperts
|
||||
from .fused_moe import TritonExperts, fused_experts
|
||||
from .fused_moe import (TritonExperts, eplb_map_to_physical_and_record,
|
||||
fused_experts)
|
||||
if has_pplx():
|
||||
from .pplx_prepare_finalize import (PplxPrepareAndFinalize,
|
||||
pplx_hidden_dim_scale_bytes)
|
||||
@ -55,6 +56,16 @@ else:
|
||||
fused_experts = None # type: ignore
|
||||
FusedMoEPermuteExpertsUnpermute = None # type: ignore
|
||||
FusedMoEPrepareAndFinalize = None # type: ignore
|
||||
|
||||
def eplb_map_to_physical_and_record(
|
||||
topk_ids: torch.Tensor, expert_load_view: torch.Tensor,
|
||||
logical_to_physical_map: torch.Tensor,
|
||||
logical_replica_count: torch.Tensor,
|
||||
indices_type: Optional[torch.dtype]) -> torch.Tensor:
|
||||
# CPU fallback: no EPLB so just return as is
|
||||
return topk_ids
|
||||
|
||||
|
||||
if is_rocm_aiter_moe_enabled():
|
||||
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
|
||||
rocm_aiter_grouped_topk as grouped_topk)
|
||||
@ -1616,55 +1627,13 @@ class FusedMoE(CustomOp):
|
||||
assert logical_to_physical_map is not None
|
||||
assert logical_replica_count is not None
|
||||
|
||||
# 1. Convert the logical expert ids to physical expert ids
|
||||
# Directly select a random replica for each logical expert
|
||||
|
||||
# TODO: maybe optimize this by using specified kernels,
|
||||
# or compute pseudo-random indices by modulo
|
||||
|
||||
# In case `indices_type` is not `torch.long` or `torch.int`,
|
||||
# e.g. `torch.uint32` as required by dispatch/combine kernels
|
||||
topk_ids_long = topk_ids.long()
|
||||
replica_indices = (
|
||||
torch.rand_like(topk_ids, dtype=torch.float) *
|
||||
logical_replica_count[topk_ids_long]).long().unsqueeze(-1)
|
||||
physical_ids = logical_to_physical_map[topk_ids_long].gather(
|
||||
-1, replica_indices).squeeze(-1)
|
||||
|
||||
topk_ids = physical_ids
|
||||
|
||||
# 2. Record expert load metrics.
|
||||
|
||||
# TODO(bowen): When using `FusedMoEModularKernel`, this
|
||||
# can be done in a more unified way, since
|
||||
# `FusedMoEPrepareAndFinalize` will return the expert
|
||||
# token count, in some cases directly from the kernel.
|
||||
# However, now there are many code paths not using
|
||||
# the modular kernel, e.g. calling `fused_experts`,
|
||||
# so we decide to keep the logic here.
|
||||
#
|
||||
# If later refactor moved all the MoE kernel calls
|
||||
# to the modular kernel, we can move this logic there
|
||||
# to achieve better efficiency.
|
||||
|
||||
# `expert_load_view`: (num_physical_experts,)
|
||||
|
||||
topk_ids_flatten = topk_ids.flatten()
|
||||
|
||||
# Performance optimization:
|
||||
# `masked_fill` is significantly faster than `masked_select`
|
||||
invalid_mask = topk_ids_flatten < 0
|
||||
# Replace invalid expert ids with 0 (just a dummy position)
|
||||
# to avoid out-of-bounds errors in scatter_add_
|
||||
index = topk_ids_flatten.masked_fill_(invalid_mask, 0)
|
||||
# `src` is the valid mask, which is 1 for valid and 0 for invalid
|
||||
src = ~invalid_mask
|
||||
|
||||
expert_load_view.scatter_add_(dim=0,
|
||||
index=index.long(),
|
||||
src=src.to(expert_load_view))
|
||||
|
||||
topk_ids = topk_ids.to(dtype=indices_type)
|
||||
topk_ids = eplb_map_to_physical_and_record(
|
||||
topk_ids=topk_ids,
|
||||
expert_load_view=expert_load_view,
|
||||
logical_to_physical_map=logical_to_physical_map,
|
||||
logical_replica_count=logical_replica_count,
|
||||
indices_type=indices_type,
|
||||
)
|
||||
|
||||
assert topk_ids.dtype == indices_type or indices_type is None
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user