mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:26:12 +08:00
Migrate LlavaImageInputs to TensorSchema (#21770)
Signed-off-by: Benji Beck <benjibeck@meta.com>
This commit is contained in:
parent
a554991748
commit
06da44f0cb
@ -3,7 +3,7 @@
|
||||
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from typing import (Final, Literal, Optional, Protocol, TypedDict, TypeVar,
|
||||
from typing import (Annotated, Final, Literal, Optional, Protocol, TypeVar,
|
||||
Union, cast)
|
||||
|
||||
import torch
|
||||
@ -33,6 +33,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
PromptUpdateDetails)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .clip import CLIPVisionModel
|
||||
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
||||
@ -44,35 +45,46 @@ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
||||
from .vision import get_vision_encoder_info
|
||||
|
||||
|
||||
class LlavaImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values"]
|
||||
pixel_values: torch.Tensor
|
||||
class LlavaImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_channels, height, width)`
|
||||
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- c: Number of channels (3)
|
||||
- h: Height
|
||||
- w: Width
|
||||
|
||||
Note that `height` or `width` may be different per batch and image,
|
||||
in which case the data is passed as a list instead of a batched tensor.
|
||||
"""
|
||||
type: Literal["pixel_values"] = "pixel_values"
|
||||
pixel_values: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
|
||||
|
||||
|
||||
class PixtralHFImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values_pixtral"]
|
||||
pixel_values: Union[torch.Tensor, list[torch.Tensor]]
|
||||
class PixtralHFImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_channels, height, width)`
|
||||
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- c: Number of channels
|
||||
- h: Height
|
||||
- w: Width
|
||||
|
||||
Note that `height` or `width` may be different per batch and image,
|
||||
in which case the data is passed as a list instead of a batched tensor.
|
||||
"""
|
||||
type: Literal["pixel_values_pixtral"] = "pixel_values_pixtral"
|
||||
pixel_values: Annotated[Union[torch.Tensor, list[torch.Tensor]],
|
||||
TensorShape("bn", "c", "h", "w")]
|
||||
|
||||
|
||||
class LlavaImageEmbeddingInputs(TypedDict):
|
||||
type: Literal["image_embeds"]
|
||||
data: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
|
||||
|
||||
`hidden_size` must match the hidden size of language model backbone.
|
||||
class LlavaImageEmbeddingInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- ifs: Image feature size
|
||||
- hs: Hidden size (must match language model backbone)
|
||||
"""
|
||||
type: Literal["image_embeds"] = "image_embeds"
|
||||
data: Annotated[torch.Tensor, TensorShape("bn", "ifs", "hs")]
|
||||
|
||||
|
||||
LlavaImageInputs = Union[LlavaImagePixelInputs, PixtralHFImagePixelInputs,
|
||||
@ -547,19 +559,6 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.language_model.make_empty_intermediate_tensors)
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
h = w = self.config.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
actual_dims = tuple(data.shape[1:])
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = ("batch_size", *map(str, expected_dims))
|
||||
raise ValueError(
|
||||
f"The expected shape of pixel values is {expected_expr}. "
|
||||
f"You supplied {tuple(data.shape)}.")
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[LlavaImageInputs]:
|
||||
pixel_values = kwargs.pop("pixel_values", None)
|
||||
@ -579,10 +578,14 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
pixel_values=flatten_bn(pixel_values),
|
||||
)
|
||||
|
||||
expected_h = expected_w = self.config.vision_config.image_size
|
||||
return LlavaImagePixelInputs(
|
||||
type="pixel_values",
|
||||
pixel_values=self._validate_pixel_values(
|
||||
flatten_bn(pixel_values, concat=True)),
|
||||
pixel_values=flatten_bn(pixel_values, concat=True),
|
||||
resolve_bindings={
|
||||
"h": expected_h,
|
||||
"w": expected_w
|
||||
},
|
||||
)
|
||||
|
||||
if image_embeds is not None:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user