mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 07:04:53 +08:00
[Model] Support Grok1 (#13795)
Signed-off-by: mgoin <mgoin64@gmail.com>
This commit is contained in:
parent
34e3494e70
commit
07c4353057
@ -286,6 +286,11 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
* `parasail-ai/GritLM-7B-vllm`.
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `Grok1ModelForCausalLM`
|
||||
* Grok1
|
||||
* `hpcai-tech/grok-1`.
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `InternLMForCausalLM`
|
||||
* InternLM
|
||||
* `internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.
|
||||
|
||||
@ -130,6 +130,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"GPTNeoXForCausalLM": _HfExamplesInfo("EleutherAI/pythia-160m"),
|
||||
"GraniteForCausalLM": _HfExamplesInfo("ibm/PowerLM-3b"),
|
||||
"GraniteMoeForCausalLM": _HfExamplesInfo("ibm/PowerMoE-3b"),
|
||||
"Grok1ModelForCausalLM": _HfExamplesInfo("hpcai-tech/grok-1",
|
||||
trust_remote_code=True),
|
||||
"InternLMForCausalLM": _HfExamplesInfo("internlm/internlm-chat-7b",
|
||||
trust_remote_code=True),
|
||||
"InternLM2ForCausalLM": _HfExamplesInfo("internlm/internlm2-chat-7b",
|
||||
|
||||
@ -1040,6 +1040,7 @@ def inplace_fused_experts(hidden_states: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
activation: str = "silu",
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
@ -1053,9 +1054,10 @@ def inplace_fused_experts(hidden_states: torch.Tensor,
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
block_shape: Optional[List[int]] = None) -> None:
|
||||
fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids, True,
|
||||
use_fp8_w8a8, use_int8_w8a16, use_int4_w4a16,
|
||||
global_num_experts, expert_map, w1_scale, w2_scale,
|
||||
w1_zp, w2_zp, a1_scale, a2_scale, block_shape)
|
||||
activation, use_fp8_w8a8, use_int8_w8a16,
|
||||
use_int4_w4a16, global_num_experts, expert_map,
|
||||
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
|
||||
block_shape)
|
||||
|
||||
|
||||
def inplace_fused_experts_fake(
|
||||
@ -1064,6 +1066,7 @@ def inplace_fused_experts_fake(
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
activation: str = "silu",
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
@ -1093,6 +1096,7 @@ def outplace_fused_experts(
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
activation: str = "silu",
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
@ -1106,7 +1110,7 @@ def outplace_fused_experts(
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
block_shape: Optional[List[int]] = None) -> torch.Tensor:
|
||||
return fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids,
|
||||
False, use_fp8_w8a8, use_int8_w8a16,
|
||||
False, activation, use_fp8_w8a8, use_int8_w8a16,
|
||||
use_int4_w4a16, global_num_experts, expert_map,
|
||||
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale,
|
||||
a2_scale, block_shape)
|
||||
@ -1118,6 +1122,7 @@ def outplace_fused_experts_fake(
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
activation: str = "silu",
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
@ -1147,6 +1152,7 @@ def fused_experts(hidden_states: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
inplace: bool = False,
|
||||
activation: str = "silu",
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
@ -1162,15 +1168,17 @@ def fused_experts(hidden_states: torch.Tensor,
|
||||
|
||||
if inplace:
|
||||
torch.ops.vllm.inplace_fused_experts(
|
||||
hidden_states, w1, w2, topk_weights, topk_ids, use_fp8_w8a8,
|
||||
use_int8_w8a16, use_int4_w4a16, global_num_experts, expert_map,
|
||||
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale, block_shape)
|
||||
hidden_states, w1, w2, topk_weights, topk_ids, activation,
|
||||
use_fp8_w8a8, use_int8_w8a16, use_int4_w4a16, global_num_experts,
|
||||
expert_map, w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
|
||||
block_shape)
|
||||
return hidden_states
|
||||
else:
|
||||
return torch.ops.vllm.outplace_fused_experts(
|
||||
hidden_states, w1, w2, topk_weights, topk_ids, use_fp8_w8a8,
|
||||
use_int8_w8a16, use_int4_w4a16, global_num_experts, expert_map,
|
||||
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale, block_shape)
|
||||
hidden_states, w1, w2, topk_weights, topk_ids, activation,
|
||||
use_fp8_w8a8, use_int8_w8a16, use_int4_w4a16, global_num_experts,
|
||||
expert_map, w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
|
||||
block_shape)
|
||||
|
||||
|
||||
def fused_experts_impl(hidden_states: torch.Tensor,
|
||||
@ -1179,6 +1187,7 @@ def fused_experts_impl(hidden_states: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
inplace: bool = False,
|
||||
activation: str = "silu",
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
@ -1303,8 +1312,14 @@ def fused_experts_impl(hidden_states: torch.Tensor,
|
||||
use_int4_w4a16=use_int4_w4a16,
|
||||
block_shape=block_shape)
|
||||
|
||||
torch.ops._C.silu_and_mul(intermediate_cache2,
|
||||
intermediate_cache1.view(-1, N))
|
||||
if activation == "silu":
|
||||
torch.ops._C.silu_and_mul(intermediate_cache2,
|
||||
intermediate_cache1.view(-1, N))
|
||||
elif activation == "gelu":
|
||||
torch.ops._C.gelu_and_mul(intermediate_cache2,
|
||||
intermediate_cache1.view(-1, N))
|
||||
else:
|
||||
raise ValueError(f"Unsupported FusedMoe activation: {activation}")
|
||||
|
||||
invoke_fused_moe_kernel(intermediate_cache2,
|
||||
w2,
|
||||
@ -1339,6 +1354,7 @@ def fused_moe(
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
inplace: bool = False,
|
||||
activation: str = "silu",
|
||||
use_grouped_topk: bool = False,
|
||||
num_expert_group: Optional[int] = None,
|
||||
topk_group: Optional[int] = None,
|
||||
@ -1370,6 +1386,8 @@ def fused_moe(
|
||||
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||
- inplace (bool): If True, perform the operation in-place.
|
||||
Defaults to False.
|
||||
- activation (str): The activation function to apply after the first
|
||||
MoE layer.
|
||||
- num_expert_group: Optional[int]: additional parameter for grouped_topk
|
||||
- topk_group: Optional[int]: additional parameter for grouped_topk
|
||||
- use_grouped_topk: If True, use grouped_topk instead of fused_topk
|
||||
@ -1420,6 +1438,7 @@ def fused_moe(
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=inplace,
|
||||
activation=activation,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
use_int4_w4a16=use_int4_w4a16,
|
||||
|
||||
@ -120,7 +120,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
expert_map: Optional[torch.Tensor] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
return self.forward(x=x,
|
||||
layer=layer,
|
||||
@ -134,7 +135,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
expert_map=expert_map,
|
||||
custom_routing_function=custom_routing_function,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias)
|
||||
e_score_correction_bias=e_score_correction_bias,
|
||||
activation=activation)
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
@ -150,7 +152,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
expert_map: Optional[torch.Tensor] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
topk_weights, topk_ids = FusedMoE.select_experts(
|
||||
hidden_states=x,
|
||||
@ -170,6 +173,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
inplace=True,
|
||||
activation=activation,
|
||||
global_num_experts=global_num_experts,
|
||||
expert_map=expert_map)
|
||||
|
||||
@ -186,9 +190,11 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
global_num_experts: int = -1,
|
||||
expert_map: Optional[torch.Tensor] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
activation: str = "silu",
|
||||
**kwargs,
|
||||
):
|
||||
assert custom_routing_function is None
|
||||
assert activation == "silu", f"{activation} is not supported."
|
||||
return layer.ipex_fusion(
|
||||
x,
|
||||
use_grouped_topk,
|
||||
@ -213,7 +219,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
expert_map: Optional[torch.Tensor] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
assert not use_grouped_topk
|
||||
assert num_expert_group is None
|
||||
@ -225,6 +232,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
if e_score_correction_bias is not None:
|
||||
raise NotImplementedError(
|
||||
"Expert score correction bias is not supported for TPU.")
|
||||
assert activation == "silu", f"{activation} is not supported for TPU."
|
||||
return fused_moe_pallas(hidden_states=x,
|
||||
w1=layer.w13_weight,
|
||||
w2=layer.w2_weight,
|
||||
@ -277,6 +285,7 @@ class FusedMoE(torch.nn.Module):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -305,6 +314,7 @@ class FusedMoE(torch.nn.Module):
|
||||
self.custom_routing_function = custom_routing_function
|
||||
self.scoring_func = scoring_func
|
||||
self.e_score_correction_bias = e_score_correction_bias
|
||||
self.activation = activation
|
||||
self.expert_map = None
|
||||
|
||||
if self.ep_size > 1:
|
||||
@ -653,7 +663,9 @@ class FusedMoE(torch.nn.Module):
|
||||
num_expert_group=self.num_expert_group,
|
||||
custom_routing_function=self.custom_routing_function,
|
||||
scoring_func=self.scoring_func,
|
||||
e_score_correction_bias=self.e_score_correction_bias)
|
||||
e_score_correction_bias=self.e_score_correction_bias,
|
||||
activation=self.activation,
|
||||
)
|
||||
|
||||
if self.reduce_results and (self.tp_size > 1 or self.ep_size > 1):
|
||||
# Default set to False. (May have to add shared expert outputs.)
|
||||
|
||||
@ -469,7 +469,9 @@ class AWQMoEMethod(FusedMoEMethodBase):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
assert activation == "silu", "Only SiLU activation is supported."
|
||||
if expert_map is not None:
|
||||
raise NotImplementedError(
|
||||
"Expert Parallelism is not supported for "
|
||||
|
||||
@ -219,6 +219,7 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts
|
||||
|
||||
@ -240,6 +241,7 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
inplace=True,
|
||||
activation=activation,
|
||||
use_fp8_w8a8=True,
|
||||
global_num_experts=global_num_experts,
|
||||
expert_map=expert_map,
|
||||
@ -550,7 +552,9 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
assert activation == "silu", "Only SiLU activation is supported."
|
||||
if expert_map is not None:
|
||||
raise NotImplementedError(
|
||||
"Expert Parallelism is not supported for "
|
||||
|
||||
@ -113,6 +113,7 @@ class ExpertsInt8MoEMethod(FusedMoEMethodBase):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts
|
||||
|
||||
@ -134,6 +135,7 @@ class ExpertsInt8MoEMethod(FusedMoEMethodBase):
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
inplace=True,
|
||||
activation=activation,
|
||||
use_int8_w8a16=True,
|
||||
global_num_experts=global_num_experts,
|
||||
expert_map=expert_map,
|
||||
|
||||
@ -675,6 +675,7 @@ class Fp8MoEMethod(FusedMoEMethodBase):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts
|
||||
|
||||
@ -698,6 +699,7 @@ class Fp8MoEMethod(FusedMoEMethodBase):
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
inplace=True,
|
||||
activation=activation,
|
||||
use_fp8_w8a8=True,
|
||||
global_num_experts=global_num_experts,
|
||||
expert_map=expert_map,
|
||||
|
||||
@ -590,7 +590,10 @@ class GPTQMarlinMoEMethod(FusedMoEMethodBase):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
activation: str = "silu",
|
||||
) -> torch.Tensor:
|
||||
assert activation == "silu", "Only SiLU activation is supported."
|
||||
|
||||
# The input must currently be float16
|
||||
orig_dtype = x.dtype
|
||||
x = x.half()
|
||||
|
||||
565
vllm/model_executor/models/grok1.py
Normal file
565
vllm/model_executor/models/grok1.py
Normal file
@ -0,0 +1,565 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Adapted from
|
||||
# https://github.com/ROCm/vllm/blob/cea7419f151cc50293a05b7fac8547f8f887c9f6/vllm/model_executor/models/grok1.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Grok1 model."""
|
||||
from typing import Iterable, List, Optional, Set, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import (is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory, make_layers,
|
||||
maybe_prefix)
|
||||
|
||||
# Default Grok1-specific constants, overridden by config values if present
|
||||
DEFAULT_ATTN_OUTPUT_MULTIPLIER = 0.08838834764831845
|
||||
DEFAULT_OUTPUT_MULTIPLIER_SCALE = 0.5773502691896257
|
||||
DEFAULT_EMBEDDING_MULTIPLIER_SCALE = 78.38367176906169
|
||||
|
||||
|
||||
class Grok1MoE(nn.Module):
|
||||
"""A tensor-parallel MoE implementation for Grok1 that shards each expert
|
||||
across all ranks.
|
||||
|
||||
Each expert's weights are sharded across all ranks and a fused MoE
|
||||
kernel is used for the forward pass, and finally we reduce the outputs
|
||||
across ranks.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_experts: int,
|
||||
top_k: int,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
tp_size: Optional[int] = None,
|
||||
prefix: str = ""):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
# Gate always runs at half / full precision for now.
|
||||
self.gate = ReplicatedLinear(hidden_size,
|
||||
num_experts,
|
||||
bias=False,
|
||||
params_dtype=params_dtype,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.gate")
|
||||
|
||||
self.experts = FusedMoE(num_experts=num_experts,
|
||||
top_k=top_k,
|
||||
hidden_size=hidden_size,
|
||||
intermediate_size=intermediate_size,
|
||||
params_dtype=params_dtype,
|
||||
reduce_results=True,
|
||||
renormalize=True,
|
||||
quant_config=quant_config,
|
||||
tp_size=tp_size,
|
||||
activation="gelu",
|
||||
prefix=f"{prefix}.experts")
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# NOTE: hidden_states can have either 1D or 2D shape.
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, self.hidden_size)
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
router_logits = 30.0 * F.tanh(router_logits / 30.0)
|
||||
final_hidden_states = self.experts(hidden_states, router_logits)
|
||||
return final_hidden_states.view(orig_shape)
|
||||
|
||||
|
||||
class Grok1Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
rope_theta: float = 10000,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
config=None, # Added config parameter
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.config = config # Store config reference
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position,
|
||||
base=int(self.rope_theta),
|
||||
is_neox_style=True,
|
||||
)
|
||||
|
||||
attn_logits_soft_cap = max(
|
||||
getattr(config, "attn_logit_softcapping", 30.0), 0.0)
|
||||
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
logits_soft_cap=attn_logits_soft_cap,
|
||||
prefix=f"{prefix}.attn")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
|
||||
# Apply attention output multiplier if specified in config
|
||||
attn_multiplier = getattr(self.config, "attn_output_multiplier",
|
||||
None) if self.config else None
|
||||
if attn_multiplier is not None:
|
||||
output = output * attn_multiplier
|
||||
return output
|
||||
|
||||
|
||||
class Grok1DecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Check for fp8 quantization
|
||||
self.use_fp8 = False
|
||||
if quant_config is not None:
|
||||
self.use_fp8 = getattr(quant_config, "is_fp8_w8a8",
|
||||
lambda: False)()
|
||||
if not self.use_fp8 and hasattr(quant_config, "is_fp8"):
|
||||
self.use_fp8 = quant_config.is_fp8
|
||||
|
||||
# Requires transformers > 4.32.0
|
||||
# Default rope_theta value if not in config
|
||||
rope_theta = 10000
|
||||
self.attn = Grok1Attention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
config=config) # Pass config to Grok1Attention
|
||||
|
||||
# Grok1 uses "num_experts" in its config
|
||||
num_experts = getattr(config, "num_experts", 8)
|
||||
num_experts_per_tok = getattr(config, "num_experts_per_tok", 2)
|
||||
|
||||
self.moe_block = Grok1MoE(num_experts=num_experts,
|
||||
top_k=num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.moe_block")
|
||||
|
||||
self.pre_attn_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attn_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.pre_moe_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_moe_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.pre_attn_norm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.pre_attn_norm(
|
||||
hidden_states, residual)
|
||||
|
||||
hidden_states = self.attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
# Post attention normalization
|
||||
hidden_states = self.post_attn_norm(hidden_states)
|
||||
|
||||
# MoE block with normalization
|
||||
hidden_states, residual = self.pre_moe_norm(hidden_states, residual)
|
||||
hidden_states = self.moe_block(hidden_states)
|
||||
hidden_states = self.post_moe_norm(hidden_states)
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class Grok1Model(nn.Module):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = (lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.org_vocab_size = config.vocab_size
|
||||
self.embedding_multiplier_scale = getattr(
|
||||
config, "embedding_multiplier_scale",
|
||||
DEFAULT_EMBEDDING_MULTIPLIER_SCALE)
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: Grok1DecoderLayer(
|
||||
config, cache_config, quant_config=quant_config, prefix=prefix
|
||||
),
|
||||
prefix=f"{prefix}.layers")
|
||||
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
hidden_states = hidden_states * self.embedding_multiplier_scale
|
||||
return hidden_states
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(positions, hidden_states,
|
||||
kv_caches[i - self.start_layer],
|
||||
attn_metadata, residual)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Grok1ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
fall_back_to_pt_during_load = False
|
||||
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
self.quant_config = quant_config
|
||||
|
||||
self.model = Grok1Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
||||
# We need bigger padding if using lora for kernel compatibility
|
||||
if not lora_config else lora_config.lora_vocab_padding_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"),
|
||||
)
|
||||
|
||||
if self.config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
|
||||
self.output_multiplier_scale = getattr(
|
||||
config, "output_multiplier_scale", DEFAULT_OUTPUT_MULTIPLIER_SCALE)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size,
|
||||
self.output_multiplier_scale)
|
||||
|
||||
self.sampler = get_sampler()
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
# Map Grok1's unique expert parameter names to standard names
|
||||
# Grok1 uses "num_experts" in its config
|
||||
num_experts = getattr(self.config, "num_experts", 8)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="linear", # Grok1 specific
|
||||
ckpt_down_proj_name="linear_1", # Grok1 specific
|
||||
ckpt_up_proj_name="linear_v", # Grok1 specific
|
||||
num_experts=num_experts)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: Set[str] = set()
|
||||
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
if (self.quant_config is not None and
|
||||
(scale_name := self.quant_config.get_cache_scale(name))):
|
||||
# Loading kv cache quantization scales
|
||||
param = params_dict[scale_name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
|
||||
loaded_weight[0])
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(scale_name)
|
||||
continue
|
||||
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
if name.endswith("scale"):
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
# Handle Grok1-specific norm.scale naming
|
||||
if "norm.scale" in name:
|
||||
name = name.replace("scale", "weight")
|
||||
|
||||
# Skip lm_head when tie_word_embeddings is True
|
||||
if "lm_head" in name and self.config.tie_word_embeddings:
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
@ -60,6 +60,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
|
||||
"GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"),
|
||||
"GritLM": ("gritlm", "GritLM"),
|
||||
"Grok1ModelForCausalLM": ("grok1", "Grok1ForCausalLM"),
|
||||
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
|
||||
"InternLM2VEForCausalLM": ("internlm2_ve", "InternLM2VEForCausalLM"),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user