[Model] Support Grok1 (#13795)

Signed-off-by: mgoin <mgoin64@gmail.com>
This commit is contained in:
Michael Goin 2025-02-25 20:07:12 -05:00 committed by GitHub
parent 34e3494e70
commit 07c4353057
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 634 additions and 17 deletions

View File

@ -286,6 +286,11 @@ See [this page](#generative-models) for more information on how to use generativ
* `parasail-ai/GritLM-7B-vllm`.
* ✅︎
* ✅︎
- * `Grok1ModelForCausalLM`
* Grok1
* `hpcai-tech/grok-1`.
* ✅︎
* ✅︎
- * `InternLMForCausalLM`
* InternLM
* `internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.

View File

@ -130,6 +130,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"GPTNeoXForCausalLM": _HfExamplesInfo("EleutherAI/pythia-160m"),
"GraniteForCausalLM": _HfExamplesInfo("ibm/PowerLM-3b"),
"GraniteMoeForCausalLM": _HfExamplesInfo("ibm/PowerMoE-3b"),
"Grok1ModelForCausalLM": _HfExamplesInfo("hpcai-tech/grok-1",
trust_remote_code=True),
"InternLMForCausalLM": _HfExamplesInfo("internlm/internlm-chat-7b",
trust_remote_code=True),
"InternLM2ForCausalLM": _HfExamplesInfo("internlm/internlm2-chat-7b",

View File

@ -1040,6 +1040,7 @@ def inplace_fused_experts(hidden_states: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
@ -1053,9 +1054,10 @@ def inplace_fused_experts(hidden_states: torch.Tensor,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None) -> None:
fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids, True,
use_fp8_w8a8, use_int8_w8a16, use_int4_w4a16,
global_num_experts, expert_map, w1_scale, w2_scale,
w1_zp, w2_zp, a1_scale, a2_scale, block_shape)
activation, use_fp8_w8a8, use_int8_w8a16,
use_int4_w4a16, global_num_experts, expert_map,
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
block_shape)
def inplace_fused_experts_fake(
@ -1064,6 +1066,7 @@ def inplace_fused_experts_fake(
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
@ -1093,6 +1096,7 @@ def outplace_fused_experts(
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
@ -1106,7 +1110,7 @@ def outplace_fused_experts(
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None) -> torch.Tensor:
return fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids,
False, use_fp8_w8a8, use_int8_w8a16,
False, activation, use_fp8_w8a8, use_int8_w8a16,
use_int4_w4a16, global_num_experts, expert_map,
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale,
a2_scale, block_shape)
@ -1118,6 +1122,7 @@ def outplace_fused_experts_fake(
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
@ -1147,6 +1152,7 @@ def fused_experts(hidden_states: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
@ -1162,15 +1168,17 @@ def fused_experts(hidden_states: torch.Tensor,
if inplace:
torch.ops.vllm.inplace_fused_experts(
hidden_states, w1, w2, topk_weights, topk_ids, use_fp8_w8a8,
use_int8_w8a16, use_int4_w4a16, global_num_experts, expert_map,
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale, block_shape)
hidden_states, w1, w2, topk_weights, topk_ids, activation,
use_fp8_w8a8, use_int8_w8a16, use_int4_w4a16, global_num_experts,
expert_map, w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
block_shape)
return hidden_states
else:
return torch.ops.vllm.outplace_fused_experts(
hidden_states, w1, w2, topk_weights, topk_ids, use_fp8_w8a8,
use_int8_w8a16, use_int4_w4a16, global_num_experts, expert_map,
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale, block_shape)
hidden_states, w1, w2, topk_weights, topk_ids, activation,
use_fp8_w8a8, use_int8_w8a16, use_int4_w4a16, global_num_experts,
expert_map, w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
block_shape)
def fused_experts_impl(hidden_states: torch.Tensor,
@ -1179,6 +1187,7 @@ def fused_experts_impl(hidden_states: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
@ -1303,8 +1312,14 @@ def fused_experts_impl(hidden_states: torch.Tensor,
use_int4_w4a16=use_int4_w4a16,
block_shape=block_shape)
torch.ops._C.silu_and_mul(intermediate_cache2,
intermediate_cache1.view(-1, N))
if activation == "silu":
torch.ops._C.silu_and_mul(intermediate_cache2,
intermediate_cache1.view(-1, N))
elif activation == "gelu":
torch.ops._C.gelu_and_mul(intermediate_cache2,
intermediate_cache1.view(-1, N))
else:
raise ValueError(f"Unsupported FusedMoe activation: {activation}")
invoke_fused_moe_kernel(intermediate_cache2,
w2,
@ -1339,6 +1354,7 @@ def fused_moe(
topk: int,
renormalize: bool,
inplace: bool = False,
activation: str = "silu",
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
@ -1370,6 +1386,8 @@ def fused_moe(
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
- inplace (bool): If True, perform the operation in-place.
Defaults to False.
- activation (str): The activation function to apply after the first
MoE layer.
- num_expert_group: Optional[int]: additional parameter for grouped_topk
- topk_group: Optional[int]: additional parameter for grouped_topk
- use_grouped_topk: If True, use grouped_topk instead of fused_topk
@ -1420,6 +1438,7 @@ def fused_moe(
topk_weights,
topk_ids,
inplace=inplace,
activation=activation,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,

View File

@ -120,7 +120,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
return self.forward(x=x,
layer=layer,
@ -134,7 +135,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
expert_map=expert_map,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias)
e_score_correction_bias=e_score_correction_bias,
activation=activation)
def forward_cuda(
self,
@ -150,7 +152,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
@ -170,6 +173,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map)
@ -186,9 +190,11 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
activation: str = "silu",
**kwargs,
):
assert custom_routing_function is None
assert activation == "silu", f"{activation} is not supported."
return layer.ipex_fusion(
x,
use_grouped_topk,
@ -213,7 +219,8 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
assert not use_grouped_topk
assert num_expert_group is None
@ -225,6 +232,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
if e_score_correction_bias is not None:
raise NotImplementedError(
"Expert score correction bias is not supported for TPU.")
assert activation == "silu", f"{activation} is not supported for TPU."
return fused_moe_pallas(hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
@ -277,6 +285,7 @@ class FusedMoE(torch.nn.Module):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
):
super().__init__()
@ -305,6 +314,7 @@ class FusedMoE(torch.nn.Module):
self.custom_routing_function = custom_routing_function
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.activation = activation
self.expert_map = None
if self.ep_size > 1:
@ -653,7 +663,9 @@ class FusedMoE(torch.nn.Module):
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias)
e_score_correction_bias=self.e_score_correction_bias,
activation=self.activation,
)
if self.reduce_results and (self.tp_size > 1 or self.ep_size > 1):
# Default set to False. (May have to add shared expert outputs.)

View File

@ -469,7 +469,9 @@ class AWQMoEMethod(FusedMoEMethodBase):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
assert activation == "silu", "Only SiLU activation is supported."
if expert_map is not None:
raise NotImplementedError(
"Expert Parallelism is not supported for "

View File

@ -219,6 +219,7 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
from vllm.model_executor.layers.fused_moe import fused_experts
@ -240,6 +241,7 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
use_fp8_w8a8=True,
global_num_experts=global_num_experts,
expert_map=expert_map,
@ -550,7 +552,9 @@ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
assert activation == "silu", "Only SiLU activation is supported."
if expert_map is not None:
raise NotImplementedError(
"Expert Parallelism is not supported for "

View File

@ -113,6 +113,7 @@ class ExpertsInt8MoEMethod(FusedMoEMethodBase):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
from vllm.model_executor.layers.fused_moe import fused_experts
@ -134,6 +135,7 @@ class ExpertsInt8MoEMethod(FusedMoEMethodBase):
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
use_int8_w8a16=True,
global_num_experts=global_num_experts,
expert_map=expert_map,

View File

@ -675,6 +675,7 @@ class Fp8MoEMethod(FusedMoEMethodBase):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
from vllm.model_executor.layers.fused_moe import fused_experts
@ -698,6 +699,7 @@ class Fp8MoEMethod(FusedMoEMethodBase):
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
use_fp8_w8a8=True,
global_num_experts=global_num_experts,
expert_map=expert_map,

View File

@ -590,7 +590,10 @@ class GPTQMarlinMoEMethod(FusedMoEMethodBase):
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
) -> torch.Tensor:
assert activation == "silu", "Only SiLU activation is supported."
# The input must currently be float16
orig_dtype = x.dtype
x = x.half()

View File

@ -0,0 +1,565 @@
# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/ROCm/vllm/blob/cea7419f151cc50293a05b7fac8547f8f887c9f6/vllm/model_executor/models/grok1.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Grok1 model."""
from typing import Iterable, List, Optional, Set, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
# Default Grok1-specific constants, overridden by config values if present
DEFAULT_ATTN_OUTPUT_MULTIPLIER = 0.08838834764831845
DEFAULT_OUTPUT_MULTIPLIER_SCALE = 0.5773502691896257
DEFAULT_EMBEDDING_MULTIPLIER_SCALE = 78.38367176906169
class Grok1MoE(nn.Module):
"""A tensor-parallel MoE implementation for Grok1 that shards each expert
across all ranks.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
def __init__(self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
prefix: str = ""):
super().__init__()
self.hidden_size = hidden_size
# Gate always runs at half / full precision for now.
self.gate = ReplicatedLinear(hidden_size,
num_experts,
bias=False,
params_dtype=params_dtype,
quant_config=None,
prefix=f"{prefix}.gate")
self.experts = FusedMoE(num_experts=num_experts,
top_k=top_k,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
params_dtype=params_dtype,
reduce_results=True,
renormalize=True,
quant_config=quant_config,
tp_size=tp_size,
activation="gelu",
prefix=f"{prefix}.experts")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# NOTE: hidden_states can have either 1D or 2D shape.
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
router_logits = 30.0 * F.tanh(router_logits / 30.0)
final_hidden_states = self.experts(hidden_states, router_logits)
return final_hidden_states.view(orig_shape)
class Grok1Attention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
config=None, # Added config parameter
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.config = config # Store config reference
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
attn_logits_soft_cap = max(
getattr(config, "attn_logit_softcapping", 30.0), 0.0)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
logits_soft_cap=attn_logits_soft_cap,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
# Apply attention output multiplier if specified in config
attn_multiplier = getattr(self.config, "attn_output_multiplier",
None) if self.config else None
if attn_multiplier is not None:
output = output * attn_multiplier
return output
class Grok1DecoderLayer(nn.Module):
def __init__(
self,
config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Check for fp8 quantization
self.use_fp8 = False
if quant_config is not None:
self.use_fp8 = getattr(quant_config, "is_fp8_w8a8",
lambda: False)()
if not self.use_fp8 and hasattr(quant_config, "is_fp8"):
self.use_fp8 = quant_config.is_fp8
# Requires transformers > 4.32.0
# Default rope_theta value if not in config
rope_theta = 10000
self.attn = Grok1Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
config=config) # Pass config to Grok1Attention
# Grok1 uses "num_experts" in its config
num_experts = getattr(config, "num_experts", 8)
num_experts_per_tok = getattr(config, "num_experts_per_tok", 2)
self.moe_block = Grok1MoE(num_experts=num_experts,
top_k=num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.moe_block")
self.pre_attn_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attn_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.pre_moe_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_moe_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.pre_attn_norm(hidden_states)
else:
hidden_states, residual = self.pre_attn_norm(
hidden_states, residual)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
# Post attention normalization
hidden_states = self.post_attn_norm(hidden_states)
# MoE block with normalization
hidden_states, residual = self.pre_moe_norm(hidden_states, residual)
hidden_states = self.moe_block(hidden_states)
hidden_states = self.post_moe_norm(hidden_states)
return hidden_states, residual
@support_torch_compile
class Grok1Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.padding_idx = config.pad_token_id
lora_vocab = (lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embedding_multiplier_scale = getattr(
config, "embedding_multiplier_scale",
DEFAULT_EMBEDDING_MULTIPLIER_SCALE)
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Grok1DecoderLayer(
config, cache_config, quant_config=quant_config, prefix=prefix
),
prefix=f"{prefix}.layers")
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
hidden_states = hidden_states * self.embedding_multiplier_scale
return hidden_states
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states,
kv_caches[i - self.start_layer],
attn_metadata, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class Grok1ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
fall_back_to_pt_during_load = False
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.model = Grok1Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.output_multiplier_scale = getattr(
config, "output_multiplier_scale", DEFAULT_OUTPUT_MULTIPLIER_SCALE)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size,
self.output_multiplier_scale)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
# Map Grok1's unique expert parameter names to standard names
# Grok1 uses "num_experts" in its config
num_experts = getattr(self.config, "num_experts", 8)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="linear", # Grok1 specific
ckpt_down_proj_name="linear_1", # Grok1 specific
ckpt_up_proj_name="linear_v", # Grok1 specific
num_experts=num_experts)
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if name.endswith("scale"):
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id)
break
else:
# Skip loading extra bias for GPTQ models.
if ((name.endswith(".bias") or name.endswith("_bias"))
and name not in params_dict):
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
# Handle Grok1-specific norm.scale naming
if "norm.scale" in name:
name = name.replace("scale", "weight")
# Skip lm_head when tie_word_embeddings is True
if "lm_head" in name and self.config.tie_word_embeddings:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params

View File

@ -60,6 +60,7 @@ _TEXT_GENERATION_MODELS = {
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
"GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"),
"GritLM": ("gritlm", "GritLM"),
"Grok1ModelForCausalLM": ("grok1", "Grok1ForCausalLM"),
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
"InternLM2VEForCausalLM": ("internlm2_ve", "InternLM2VEForCausalLM"),