Start background task in AsyncLLMEngine.generate (#988)

Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
This commit is contained in:
Antoni Baum 2023-09-08 00:03:39 -07:00 committed by GitHub
parent 4b5bcf8906
commit 080438477f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 16 additions and 24 deletions

View File

@ -40,8 +40,7 @@ if __name__ == "__main__":
args = parser.parse_args()
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngineWithStats.from_engine_args(engine_args,
start_engine_loop=False)
engine = AsyncLLMEngineWithStats.from_engine_args(engine_args)
vllm.entrypoints.api_server.engine = engine
uvicorn.run(
app,

View File

@ -230,6 +230,8 @@ class AsyncLLMEngine:
async frontend will be executed in a separate process as the
model workers.
log_requests: Whether to log the requests.
start_engine_loop: If True, the background task to run the engine
will be automatically started in the generate call.
*args, *kwargs: Arguments for LLMEngine.
"""
@ -240,7 +242,7 @@ class AsyncLLMEngine:
engine_use_ray: bool,
*args,
log_requests: bool = True,
start_engine_loop: bool = False,
start_engine_loop: bool = True,
**kwargs) -> None:
self.worker_use_ray = worker_use_ray
self.engine_use_ray = engine_use_ray
@ -249,8 +251,7 @@ class AsyncLLMEngine:
self.request_tracker: RequestTracker = RequestTracker()
self.background_loop = None
if start_engine_loop:
self.start_background_loop()
self.start_engine_loop = start_engine_loop
@property
def is_running(self) -> bool:
@ -330,11 +331,14 @@ class AsyncLLMEngine:
f"prompt token ids: {prompt_token_ids}.")
if not self.is_running:
raise AsyncEngineDeadError(
"Background loop is not running. If it was running, "
"inspect the output to find the stacktrace of the "
"error that caused the background loop to stop "
"(AsyncEngineDeadError).")
if self.start_engine_loop:
self.start_background_loop()
else:
raise AsyncEngineDeadError(
"Background loop is not running. If it was running, "
"inspect the output to find the stacktrace of the "
"error that caused the background loop to stop "
"(AsyncEngineDeadError).")
stream = self.request_tracker.add_request(
request_id,
@ -426,7 +430,7 @@ class AsyncLLMEngine:
@classmethod
def from_engine_args(cls,
engine_args: AsyncEngineArgs,
start_engine_loop: bool = False) -> "AsyncLLMEngine":
start_engine_loop: bool = True) -> "AsyncLLMEngine":
"""Creates an async LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()

View File

@ -32,9 +32,6 @@ async def generate(request: Request) -> Response:
sampling_params = SamplingParams(**request_dict)
request_id = random_uuid()
if not engine.is_running:
engine.start_background_loop()
results_generator = engine.generate(prompt, sampling_params, request_id)
# Streaming case
@ -80,8 +77,7 @@ if __name__ == "__main__":
args = parser.parse_args()
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args,
start_engine_loop=False)
engine = AsyncLLMEngine.from_engine_args(engine_args)
uvicorn.run(app,
host=args.host,

View File

@ -192,9 +192,6 @@ async def create_chat_completion(request: ChatCompletionRequest,
"""
logger.info(f"Received chat completion request: {request}")
if not engine.is_running:
engine.start_background_loop()
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
@ -367,9 +364,6 @@ async def create_completion(request: CompletionRequest, raw_request: Request):
"""
logger.info(f"Received completion request: {request}")
if not engine.is_running:
engine.start_background_loop()
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
@ -627,8 +621,7 @@ if __name__ == "__main__":
served_model = args.model
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args,
start_engine_loop=False)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine_model_config = asyncio.run(engine.get_model_config())
max_model_len = engine_model_config.get_max_model_len()