[Perf][DeepSeek] Add sigmoid+bias fusion to fused_grouped_topk from TRTLLM (#28124)

Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
This commit is contained in:
Michael Goin 2025-11-08 10:20:55 +08:00 committed by GitHub
parent 61d25dc44b
commit 0852527647
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 149 additions and 75 deletions

View File

@ -427,11 +427,29 @@ __device__ inline bool is_finite(const T val) {
#endif
}
// Scoring function enums
enum ScoringFunc {
SCORING_NONE = 0, // no activation function
SCORING_SIGMOID = 1 // apply sigmoid
};
// Efficient sigmoid approximation from TensorRT-LLM
__device__ inline float sigmoid_accurate(float x) {
return 0.5f * tanhf(0.5f * x) + 0.5f;
}
template <typename T>
__device__ void topk_with_k2(T* output, T const* input,
__device__ inline T apply_sigmoid(T val) {
float f = cuda_cast<float, T>(val);
return cuda_cast<T, float>(sigmoid_accurate(f));
}
template <typename T>
__device__ void topk_with_k2(T* output, T const* input, T const* bias,
cg::thread_block_tile<32> const& tile,
int32_t const lane_id,
int const num_experts_per_group) {
int const num_experts_per_group,
int const scoring_func) {
// Get the top2 per thread
T largest = neg_inf<T>();
T second_largest = neg_inf<T>();
@ -439,6 +457,12 @@ __device__ void topk_with_k2(T* output, T const* input,
if (num_experts_per_group > WARP_SIZE) {
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
T value = input[i];
// Apply scoring function if needed
if (scoring_func == SCORING_SIGMOID) {
value = apply_sigmoid(value);
}
value = value + bias[i];
if (value > largest) {
second_largest = largest;
largest = value;
@ -448,7 +472,13 @@ __device__ void topk_with_k2(T* output, T const* input,
}
} else {
for (int i = lane_id; i < num_experts_per_group; i += WARP_SIZE) {
largest = input[i];
T value = input[i];
// Apply scoring function if needed
if (scoring_func == SCORING_SIGMOID) {
value = apply_sigmoid(value);
}
value = value + bias[i];
largest = value;
}
}
@ -472,17 +502,21 @@ __device__ void topk_with_k2(T* output, T const* input,
}
template <typename T>
__global__ void topk_with_k2_kernel(T* output, T* input,
__global__ void topk_with_k2_kernel(T* output, T* input, T const* bias,
int64_t const num_tokens,
int64_t const num_cases,
int64_t const n_group,
int64_t const num_experts_per_group) {
int64_t const num_experts_per_group,
int const scoring_func) {
int32_t warp_id = threadIdx.x / WARP_SIZE;
int32_t lane_id = threadIdx.x % WARP_SIZE;
int32_t case_id = blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id;
if (case_id < num_cases) {
input += case_id * num_experts_per_group;
// bias is per expert group, offset to current group
int32_t group_id = case_id % n_group;
T const* group_bias = bias + group_id * num_experts_per_group;
output += case_id;
cg::thread_block block = cg::this_thread_block();
@ -491,7 +525,8 @@ __global__ void topk_with_k2_kernel(T* output, T* input,
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
topk_with_k2(output, input, tile, lane_id, num_experts_per_group);
topk_with_k2(output, input, group_bias, tile, lane_id,
num_experts_per_group, scoring_func);
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
@ -500,16 +535,15 @@ __global__ void topk_with_k2_kernel(T* output, T* input,
template <typename T, typename IdxT>
__global__ void group_idx_and_topk_idx_kernel(
T* scores, T const* group_scores, T* topk_values, IdxT* topk_indices,
T* scores_with_bias, int64_t const num_tokens, int64_t const n_group,
T* scores, T const* group_scores, float* topk_values, IdxT* topk_indices,
T const* bias, int64_t const num_tokens, int64_t const n_group,
int64_t const topk_group, int64_t const topk, int64_t const num_experts,
int64_t const num_experts_per_group, bool renormalize,
double routed_scaling_factor) {
double routed_scaling_factor, int scoring_func) {
int32_t warp_id = threadIdx.x / WARP_SIZE;
int32_t lane_id = threadIdx.x % WARP_SIZE;
int32_t case_id =
blockIdx.x * NUM_WARPS_PER_BLOCK + warp_id; // one per token
scores_with_bias += case_id * num_experts;
scores += case_id * num_experts;
group_scores += case_id * n_group;
topk_values += case_id * topk;
@ -577,10 +611,16 @@ __global__ void group_idx_and_topk_idx_kernel(
int32_t offset = i_group * num_experts_per_group;
for (int32_t i = lane_id; i < align_num_experts_per_group;
i += WARP_SIZE) {
T candidates = (i < num_experts_per_group) &&
is_finite(scores_with_bias[offset + i])
? scores_with_bias[offset + i]
: neg_inf<T>();
T candidates = neg_inf<T>();
if (i < num_experts_per_group) {
// Apply scoring function (if any) and add bias
T input = scores[offset + i];
if (is_finite(input)) {
T score = (scoring_func == SCORING_SIGMOID) ? apply_sigmoid(input)
: input;
candidates = score + bias[offset + i];
}
}
queue.add(candidates, offset + i);
}
if (group_scores[i_group] == topk_group_value) {
@ -602,11 +642,12 @@ __global__ void group_idx_and_topk_idx_kernel(
for (int i = lane_id;
i < warp_topk::round_up_to_multiple_of<WARP_SIZE>(topk);
i += WARP_SIZE) {
T value =
i < topk
? scores[s_topk_idx[i]]
: cuda_cast<T, float>(0.0f); // Load the valid value of expert
T value = cuda_cast<T, float>(0.0f);
if (i < topk) {
// Load the score value (without bias) for normalization
T input = scores[s_topk_idx[i]];
value =
(scoring_func == SCORING_SIGMOID) ? apply_sigmoid(input) : input;
s_topk_value[i] = value;
}
topk_sum +=
@ -627,12 +668,12 @@ __global__ void group_idx_and_topk_idx_kernel(
value = cuda_cast<float, T>(s_topk_value[i]) * routed_scaling_factor;
}
topk_indices[i] = s_topk_idx[i];
topk_values[i] = cuda_cast<T, float>(value);
topk_values[i] = value;
}
} else {
for (int i = lane_id; i < topk; i += WARP_SIZE) {
topk_indices[i] = i;
topk_values[i] = cuda_cast<T, float>(1.0f / topk);
topk_values[i] = 1.0f / topk;
}
}
// Note: when if_proceed_next_topk==false, choose the first 8 experts as the
@ -644,12 +685,12 @@ __global__ void group_idx_and_topk_idx_kernel(
}
template <typename T, typename IdxT>
void invokeNoAuxTc(T* scores, T* group_scores, T* topk_values,
IdxT* topk_indices, T* scores_with_bias,
int64_t const num_tokens, int64_t const num_experts,
int64_t const n_group, int64_t const topk_group,
int64_t const topk, bool const renormalize,
double const routed_scaling_factor, bool enable_pdl = false,
void invokeNoAuxTc(T* scores, T* group_scores, float* topk_values,
IdxT* topk_indices, T const* bias, int64_t const num_tokens,
int64_t const num_experts, int64_t const n_group,
int64_t const topk_group, int64_t const topk,
bool const renormalize, double const routed_scaling_factor,
int const scoring_func, bool enable_pdl = false,
cudaStream_t const stream = 0) {
int64_t num_cases = num_tokens * n_group;
int64_t topk_with_k2_num_blocks = (num_cases - 1) / NUM_WARPS_PER_BLOCK + 1;
@ -664,8 +705,9 @@ void invokeNoAuxTc(T* scores, T* group_scores, T* topk_values,
attrs[0].val.programmaticStreamSerializationAllowed = enable_pdl;
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernel_instance1, group_scores, scores_with_bias,
num_tokens, num_cases, n_group, num_experts / n_group);
cudaLaunchKernelEx(&config, kernel_instance1, group_scores, scores, bias,
num_tokens, num_cases, n_group, num_experts / n_group,
scoring_func);
int64_t topk_with_k_group_num_blocks =
(num_tokens - 1) / NUM_WARPS_PER_BLOCK + 1;
@ -682,19 +724,18 @@ void invokeNoAuxTc(T* scores, T* group_scores, T* topk_values,
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, kernel_instance2, scores, group_scores,
topk_values, topk_indices, scores_with_bias, num_tokens,
n_group, topk_group, topk, num_experts,
num_experts / n_group, renormalize, routed_scaling_factor);
topk_values, topk_indices, bias, num_tokens, n_group,
topk_group, topk, num_experts, num_experts / n_group,
renormalize, routed_scaling_factor, scoring_func);
}
#define INSTANTIATE_NOAUX_TC(T, IdxT) \
template void invokeNoAuxTc<T, IdxT>( \
T * scores, T * group_scores, T * topk_values, IdxT * topk_indices, \
T * scores_with_bias, int64_t const num_tokens, \
int64_t const num_experts, int64_t const n_group, \
int64_t const topk_group, int64_t const topk, bool const renormalize, \
double const routed_scaling_factor, bool enable_pdl, \
cudaStream_t const stream);
T * scores, T * group_scores, float* topk_values, IdxT* topk_indices, \
T const* bias, int64_t const num_tokens, int64_t const num_experts, \
int64_t const n_group, int64_t const topk_group, int64_t const topk, \
bool const renormalize, double const routed_scaling_factor, \
int const scoring_func, bool enable_pdl, cudaStream_t const stream);
INSTANTIATE_NOAUX_TC(float, int32_t);
INSTANTIATE_NOAUX_TC(half, int32_t);
@ -703,28 +744,32 @@ INSTANTIATE_NOAUX_TC(__nv_bfloat16, int32_t);
} // namespace vllm
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
double routed_scaling_factor) {
auto data_type = scores_with_bias.scalar_type();
auto input_size = scores_with_bias.sizes();
torch::Tensor const& scores, int64_t n_group, int64_t topk_group,
int64_t topk, bool renormalize, double routed_scaling_factor,
torch::Tensor const& bias, int64_t scoring_func = 0) {
auto data_type = scores.scalar_type();
auto input_size = scores.sizes();
int64_t num_tokens = input_size[0];
int64_t num_experts = input_size[1];
TORCH_CHECK(input_size.size() == 2, "scores_with_bias must be a 2D Tensor");
TORCH_CHECK(input_size.size() == 2, "scores must be a 2D Tensor");
TORCH_CHECK(num_experts % n_group == 0,
"num_experts should be divisible by n_group");
TORCH_CHECK(n_group <= 32,
"n_group should be smaller than or equal to 32 for now");
TORCH_CHECK(topk <= 32, "topk should be smaller than or equal to 32 for now");
TORCH_CHECK(scoring_func == vllm::moe::SCORING_NONE ||
scoring_func == vllm::moe::SCORING_SIGMOID,
"scoring_func must be SCORING_NONE (0) or SCORING_SIGMOID (1)");
torch::Tensor group_scores = torch::empty(
{num_tokens, n_group}, torch::dtype(data_type).device(torch::kCUDA));
// Always output float32 for topk_values (eliminates Python-side conversion)
torch::Tensor topk_values = torch::empty(
{num_tokens, topk}, torch::dtype(data_type).device(torch::kCUDA));
{num_tokens, topk}, torch::dtype(torch::kFloat32).device(torch::kCUDA));
torch::Tensor topk_indices = torch::empty(
{num_tokens, topk}, torch::dtype(torch::kInt32).device(torch::kCUDA));
auto stream = c10::cuda::getCurrentCUDAStream(scores_with_bias.get_device());
auto stream = c10::cuda::getCurrentCUDAStream(scores.get_device());
switch (data_type) {
case torch::kFloat16:
@ -732,11 +777,11 @@ std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
vllm::moe::invokeNoAuxTc<half, int32_t>(
reinterpret_cast<half*>(scores.mutable_data_ptr()),
reinterpret_cast<half*>(group_scores.mutable_data_ptr()),
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
reinterpret_cast<half*>(scores_with_bias.data_ptr()), num_tokens,
reinterpret_cast<half const*>(bias.data_ptr()), num_tokens,
num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, false, stream);
routed_scaling_factor, static_cast<int>(scoring_func), false, stream);
break;
case torch::kFloat32:
// Handle Float32
@ -745,20 +790,20 @@ std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
reinterpret_cast<float*>(group_scores.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
reinterpret_cast<float*>(scores_with_bias.data_ptr()), num_tokens,
reinterpret_cast<float const*>(bias.data_ptr()), num_tokens,
num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, false, stream);
routed_scaling_factor, static_cast<int>(scoring_func), false, stream);
break;
case torch::kBFloat16:
// Handle BFloat16
vllm::moe::invokeNoAuxTc<__nv_bfloat16, int32_t>(
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(group_scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(scores_with_bias.data_ptr()),
num_tokens, num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, false, stream);
reinterpret_cast<__nv_bfloat16 const*>(bias.data_ptr()), num_tokens,
num_experts, n_group, topk_group, topk, renormalize,
routed_scaling_factor, static_cast<int>(scoring_func), false, stream);
break;
default:
// Handle other data types

View File

@ -39,9 +39,9 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
int64_t BLOCK_SIZE_K, int64_t bit);
std::tuple<torch::Tensor, torch::Tensor> grouped_topk(
torch::Tensor const& scores, torch::Tensor const& scores_with_bias,
int64_t n_group, int64_t topk_group, int64_t topk, bool renormalize,
double routed_scaling_factor);
torch::Tensor const& scores, int64_t n_group, int64_t topk_group,
int64_t topk, bool renormalize, double routed_scaling_factor,
torch::Tensor const& bias, int64_t scoring_func);
#endif
bool moe_permute_unpermute_supported();

View File

@ -107,9 +107,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
// Apply grouped topk routing to select experts.
m.def(
"grouped_topk(Tensor scores, Tensor scores_with_bias, int n_group, int "
"grouped_topk(Tensor scores, int n_group, int "
"topk_group, int topk, bool renormalize, float "
"routed_scaling_factor) -> (Tensor, Tensor)");
"routed_scaling_factor, Tensor bias, int scoring_func) -> (Tensor, "
"Tensor)");
m.impl("grouped_topk", torch::kCUDA, &grouped_topk);
#endif
}

View File

@ -1898,25 +1898,40 @@ def topk_softmax(
def grouped_topk(
scores: torch.Tensor,
scores_with_bias: torch.Tensor,
num_expert_group: int,
topk_group: int,
topk: int,
renormalize: bool,
routed_scaling_factor: float,
bias: torch.Tensor,
scoring_func: int = 0,
):
"""
Perform grouped top-k routing for mixture of experts.
Args:
scores: Raw inputs (logits if scoring_func=1, scores if scoring_func=0)
num_expert_group: Number of expert groups
topk_group: Number of groups to select
topk: Number of experts to select per token
renormalize: Whether to renormalize the output weights
routed_scaling_factor: Scaling factor for routing weights
bias: Bias tensor (e_score_correction_bias). Always fused in kernel.
scoring_func: 0=none (no activation), 1=sigmoid
"""
if not current_platform.is_cuda():
raise NotImplementedError(
"The fused grouped_topk kernel is only available on CUDA platforms"
)
return torch.ops._moe_C.grouped_topk(
scores,
scores_with_bias,
num_expert_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
bias,
scoring_func,
)

View File

@ -1330,24 +1330,37 @@ def fused_grouped_topk(
) -> tuple[torch.Tensor, torch.Tensor]:
assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
if scoring_func == "softmax":
if scoring_func == "sigmoid":
# Fully fused kernel path for sigmoid
topk_values, topk_indices = ops.grouped_topk(
gating_output, # raw logits
num_expert_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
e_score_correction_bias.to(gating_output.dtype),
1, # scoring_func=1 for sigmoid
)
elif scoring_func == "softmax":
# Apply softmax in Python, then use fused kernel
# TODO: Add support for softmax in kernel
scores = torch.softmax(gating_output, dim=-1)
elif scoring_func == "sigmoid":
scores = gating_output.sigmoid()
topk_values, topk_indices = ops.grouped_topk(
scores, # pre-computed scores
num_expert_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
e_score_correction_bias.to(gating_output.dtype),
0, # scoring_func=0 (no activation, scores already computed)
)
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
scores_with_bias = scores + e_score_correction_bias.unsqueeze(0)
topk_values, topk_indices = ops.grouped_topk(
scores,
scores_with_bias.to(scores.dtype),
num_expert_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
)
return topk_values.to(torch.float32), topk_indices.to(torch.int32)
# Fused kernel outputs float32 values and int32 indices directly
return topk_values, topk_indices
def inplace_fused_experts(