[V1] Update interface for idefics3 (#10680)

Signed-off-by: Roger Wang <ywang@roblox.com>
This commit is contained in:
Roger Wang 2024-11-26 18:04:01 -08:00 committed by GitHub
parent 0a71900bc9
commit 0a4d968500
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -39,6 +39,7 @@ from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.image import cached_get_image_processor
from vllm.multimodal.inputs import NestedTensors
from vllm.sequence import IntermediateTensors, SequenceData
from vllm.transformers_utils.processor import cached_get_processor
from vllm.utils import is_list_of
@ -597,6 +598,12 @@ class Idefics3Model(nn.Module):
image_features = self._process_image_pixels(image_input)
return self.connector(image_features)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
) -> torch.Tensor:
return self.text_model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -604,26 +611,8 @@ class Idefics3Model(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
else:
# always pass the input via `inputs_embeds`
# to make sure the computation graph is consistent
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
vision_embeddings = self._process_image_input(image_input)
inputs_embeds = self.text_model.get_input_embeddings(input_ids)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, vision_embeddings,
self.image_token_id)
else:
inputs_embeds = self.text_model.get_input_embeddings(input_ids)
input_ids = None
hidden_states = self.text_model(
input_ids,
@ -718,6 +707,25 @@ class Idefics3ForConditionalGeneration(nn.Module, SupportsMultiModal,
self.logits_processor = LogitsProcessor(config.text_config.vocab_size)
self.sampler = Sampler()
def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]:
image_input = self.model._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
vision_embeddings = self.model._process_image_input(image_input)
return vision_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[NestedTensors] = None,
) -> torch.Tensor:
inputs_embeds = self.model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.config.image_token_id)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
@ -725,16 +733,27 @@ class Idefics3ForConditionalGeneration(nn.Module, SupportsMultiModal,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(
input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
**kwargs,
)
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.model.text_model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,