mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-23 22:14:34 +08:00
[CI/Build] Fix flaky entrypoints test (#25663)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
70fbdb26e9
commit
0bcc3a160d
@ -15,7 +15,7 @@ from transformers import AutoConfig
|
||||
from ...utils import RemoteOpenAIServer
|
||||
|
||||
# any model with a chat template should work here
|
||||
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
||||
MODEL_NAME = "facebook/opt-125m"
|
||||
|
||||
CONFIG = AutoConfig.from_pretrained(MODEL_NAME)
|
||||
|
||||
@ -27,7 +27,7 @@ def default_server_args() -> list[str]:
|
||||
"--dtype",
|
||||
"bfloat16",
|
||||
"--max-model-len",
|
||||
"8192",
|
||||
"2048",
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--enforce-eager",
|
||||
@ -36,6 +36,27 @@ def default_server_args() -> list[str]:
|
||||
]
|
||||
|
||||
|
||||
EXAMPLE_PROMPTS = [
|
||||
"Hello, my name is",
|
||||
"What is an LLM?",
|
||||
]
|
||||
|
||||
|
||||
def _encode_embeds(embeds: torch.Tensor):
|
||||
buffer = io.BytesIO()
|
||||
torch.save(embeds, buffer)
|
||||
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def example_prompt_embeds(hf_runner):
|
||||
"""Create example embeddings and return them as base64 encoded string."""
|
||||
with hf_runner(MODEL_NAME) as hf_model:
|
||||
example_embeddings = hf_model.get_prompt_embeddings(EXAMPLE_PROMPTS)
|
||||
|
||||
return [_encode_embeds(item) for item in example_embeddings]
|
||||
|
||||
|
||||
@pytest.fixture(scope="module",
|
||||
params=["", "--disable-frontend-multiprocessing"])
|
||||
def server_with_prompt_embeds(default_server_args, request):
|
||||
@ -52,21 +73,16 @@ async def client_with_prompt_embeds(server_with_prompt_embeds):
|
||||
yield async_client
|
||||
|
||||
|
||||
def create_dummy_embeds(num_tokens: int = 5) -> str:
|
||||
"""Create dummy embeddings and return them as base64 encoded string."""
|
||||
dummy_embeds = torch.randn(num_tokens, CONFIG.hidden_size)
|
||||
buffer = io.BytesIO()
|
||||
torch.save(dummy_embeds, buffer)
|
||||
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
|
||||
|
||||
@pytest.mark.skip("This test is skipped because it is flaky.")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_completions_with_prompt_embeds(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI, model_name: str):
|
||||
example_prompt_embeds,
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI,
|
||||
model_name: str,
|
||||
):
|
||||
encoded_embeds, encoded_embeds2 = example_prompt_embeds
|
||||
|
||||
# Test case: Single prompt embeds input
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -77,7 +93,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert completion.choices[0].prompt_logprobs is None
|
||||
|
||||
# Test case: batch completion with prompt_embeds
|
||||
encoded_embeds2 = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -89,7 +104,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert len(completion.choices[1].text) >= 1
|
||||
|
||||
# Test case: streaming with prompt_embeds
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
single_completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -117,7 +131,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert "".join(chunks) == single_output
|
||||
|
||||
# Test case: batch streaming with prompt_embeds
|
||||
encoded_embeds2 = create_dummy_embeds()
|
||||
stream = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -139,7 +152,6 @@ async def test_completions_with_prompt_embeds(
|
||||
assert len(chunks_stream_embeds[1]) > 0
|
||||
|
||||
# Test case: mixed text and prompt_embeds
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
completion_mixed = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="This is a prompt",
|
||||
@ -184,10 +196,14 @@ async def test_completions_errors_with_prompt_embeds(
|
||||
@pytest.mark.parametrize("logprobs_arg", [1, 0])
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_completions_with_logprobs_and_prompt_embeds(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI, logprobs_arg: int,
|
||||
model_name: str):
|
||||
example_prompt_embeds,
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI,
|
||||
logprobs_arg: int,
|
||||
model_name: str,
|
||||
):
|
||||
encoded_embeds, encoded_embeds2 = example_prompt_embeds
|
||||
|
||||
# Test case: Logprobs using prompt_embeds
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -207,7 +223,6 @@ async def test_completions_with_logprobs_and_prompt_embeds(
|
||||
assert len(logprobs.tokens) == 5
|
||||
|
||||
# Test case: Log probs with batch completion and prompt_embeds
|
||||
encoded_embeds2 = create_dummy_embeds()
|
||||
completion = await client_with_prompt_embeds.completions.create(
|
||||
model=model_name,
|
||||
prompt="", # Add empty prompt as required parameter
|
||||
@ -232,9 +247,12 @@ async def test_completions_with_logprobs_and_prompt_embeds(
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_prompt_logprobs_raises_error(
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI):
|
||||
example_prompt_embeds,
|
||||
client_with_prompt_embeds: openai.AsyncOpenAI,
|
||||
):
|
||||
encoded_embeds, _ = example_prompt_embeds
|
||||
|
||||
with pytest.raises(BadRequestError, match="not compatible"):
|
||||
encoded_embeds = create_dummy_embeds()
|
||||
await client_with_prompt_embeds.completions.create(
|
||||
model=MODEL_NAME,
|
||||
prompt="",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user