[Refactor] Simplify code for MM budget (#23310)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung 2025-08-21 16:00:16 +08:00 committed by GitHub
parent 2e2000f352
commit 0c6e40bbaa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 59 additions and 70 deletions

View File

@ -1,6 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Mapping
from typing import TYPE_CHECKING
from vllm.logger import init_logger
@ -188,35 +188,47 @@ def compute_encoder_budget(
- Space budget for encoder cache size, in unit of number of tokens
in the input sequence.
"""
if mm_registry.supports_multimodal_inputs(model_config):
max_tokens_by_modality = mm_registry \
.get_max_tokens_per_item_by_nonzero_modality(model_config)
if not mm_registry.supports_multimodal_inputs(model_config):
return 0, 0
return compute_mm_encoder_budget(
scheduler_config,
max_tokens_by_modality,
)
# TODO: handle encoder-decoder models once we support them.
(
encoder_compute_budget,
encoder_cache_size,
) = _compute_encoder_budget_multimodal(
model_config,
scheduler_config,
mm_registry,
)
return encoder_compute_budget, encoder_cache_size
return compute_text_encoder_budget(scheduler_config)
def _compute_encoder_budget_multimodal(
model_config: "ModelConfig",
def compute_text_encoder_budget(
scheduler_config: "SchedulerConfig") -> tuple[int, int]:
"""Compute the encoder cache budget based on the model and scheduler
configurations for a text-only model.
Args:
scheduler_config: Scheduler configuration.
Returns:
- Compute budget for encoder execution, in unit of number of tokens
in the input sequence.
- Space budget for encoder cache size, in unit of number of tokens
in the input sequence.
"""
# Currently text-only encoder-decoder models are not supported
return 0, 0
def compute_mm_encoder_budget(
scheduler_config: "SchedulerConfig",
mm_registry: MultiModalRegistry,
max_tokens_by_modality: Mapping[str, int],
) -> tuple[int, int]:
"""Compute the encoder cache budget based on the model and scheduler
configurations for a multimodal model.
Args:
model_config: Model configuration.
scheduler_config: Scheduler configuration.
mm_registry: Provides information about the token cost.
max_tokens_by_modality: The maximum number of tokens for each
non-text modality.
Returns:
- Compute budget for encoder execution, in unit of number of tokens
@ -225,18 +237,14 @@ def _compute_encoder_budget_multimodal(
in the input sequence.
"""
max_tokens_by_modality_dict = mm_registry \
.get_max_tokens_per_item_by_nonzero_modality(model_config)
if not max_tokens_by_modality_dict:
if not max_tokens_by_modality:
logger.warning(
"All non-text modalities supported by the model have been "
"explicitly disabled via limit_mm_per_prompt. Encoder cache will "
"not be initialized.")
return 0, 0
_, max_tokens_per_mm_item = max(max_tokens_by_modality_dict.items(),
key=lambda item: item[1])
max_tokens_per_mm_item = max(max_tokens_by_modality.values())
if (scheduler_config.disable_chunked_mm_input and max_tokens_per_mm_item
> scheduler_config.max_num_batched_tokens):

View File

@ -341,10 +341,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
self.model_config,
self.scheduler_config,
self.mm_registry,
max_model_len=self.max_model_len,
max_num_reqs=self.max_num_reqs,
) if self.supports_mm_inputs \
else None)
) if self.supports_mm_inputs else None)
self.reorder_batch_threshold: Optional[int] = None
@ -669,7 +666,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
mm_budget = self.mm_budget
assert mm_budget is not None
dummy_modality, _ = mm_budget.get_modality_with_max_tokens()
dummy_modality = mm_budget.get_modality_with_max_tokens()
return self._get_mm_dummy_batch(dummy_modality, num_seqs)
@ -2595,14 +2592,9 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
# NOTE: Currently model is profiled with a single non-text
# modality with the max possible input tokens even when
# it supports multiple.
(
dummy_modality,
max_tokens,
) = mm_budget.get_modality_with_max_tokens()
(
max_mm_items_per_prompt,
max_mm_items_per_batch,
) = mm_budget.get_max_items(dummy_modality, max_tokens)
dummy_modality = mm_budget.get_modality_with_max_tokens()
max_mm_items_per_batch = mm_budget \
.max_items_per_batch_by_modality[dummy_modality]
logger.info(
"Encoder cache will be initialized with a budget of "

View File

@ -292,8 +292,6 @@ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
self.model_config,
self.scheduler_config,
self.mm_registry,
max_model_len=self.max_model_len,
max_num_reqs=self.max_num_reqs,
) if self.supports_mm_inputs else None)
if not self.use_spmd:
@ -1545,14 +1543,9 @@ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
# NOTE: Currently model is profiled with a single non-text
# modality with the max possible input tokens even when
# it supports multiple.
(
dummy_modality,
max_tokens,
) = mm_budget.get_modality_with_max_tokens()
(
max_mm_items_per_prompt,
max_mm_items_per_batch,
) = mm_budget.get_max_items(dummy_modality, max_tokens)
dummy_modality = mm_budget.get_modality_with_max_tokens()
max_mm_items_per_batch = mm_budget \
.max_items_per_batch_by_modality[dummy_modality]
logger.info(
"Encoder cache will be initialized with a budget of "

View File

@ -12,7 +12,7 @@ from vllm.model_executor.models.interfaces import MultiModalEmbeddings
from vllm.model_executor.models.utils import extract_layer_index
from vllm.multimodal.registry import MultiModalRegistry
from vllm.v1.attention.backends.utils import AttentionMetadataBuilder
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
from vllm.v1.core.encoder_cache_manager import compute_mm_encoder_budget
from vllm.v1.kv_cache_interface import KVCacheGroupSpec
if TYPE_CHECKING:
@ -27,9 +27,6 @@ class MultiModalBudget:
model_config: ModelConfig,
scheduler_config: SchedulerConfig,
mm_registry: MultiModalRegistry,
*,
max_model_len: int,
max_num_reqs: int,
) -> None:
super().__init__()
@ -37,25 +34,25 @@ class MultiModalBudget:
self.scheduler_config = scheduler_config
self.mm_registry = mm_registry
encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
model_config=model_config,
scheduler_config=scheduler_config,
mm_registry=mm_registry,
)
self.max_num_encoder_input_tokens = encoder_compute_budget
self.encoder_cache_size = encoder_cache_size
self.max_model_len = max_model_len
self.max_num_reqs = max_num_reqs
self.max_model_len = model_config.max_model_len
self.max_num_reqs = scheduler_config.max_num_seqs
self.mm_limits = mm_registry.get_mm_limits_per_prompt(model_config)
max_items_per_prompt_by_modality = dict[str, int]()
max_items_per_batch_by_modality = dict[str, int]()
max_tokens_by_modality = mm_registry \
.get_max_tokens_per_item_by_nonzero_modality(model_config)
encoder_compute_budget, encoder_cache_size = compute_mm_encoder_budget(
scheduler_config,
max_tokens_by_modality,
)
self.encoder_compute_budget = encoder_compute_budget
self.encoder_cache_size = encoder_cache_size
max_items_per_prompt_by_modality = dict[str, int]()
max_items_per_batch_by_modality = dict[str, int]()
for modality, max_tokens in max_tokens_by_modality.items():
(
max_items_per_prompt,
@ -69,15 +66,14 @@ class MultiModalBudget:
self.max_items_per_prompt_by_modality = max_items_per_prompt_by_modality
self.max_items_per_batch_by_modality = max_items_per_batch_by_modality
def get_modality_with_max_tokens(self) -> tuple[str, int]:
def get_modality_with_max_tokens(self) -> str:
max_tokens_by_modality = self.max_tokens_by_modality
modality, max_tokens = max(max_tokens_by_modality.items(),
key=lambda item: item[1])
modality, _ = max(max_tokens_by_modality.items(), key=lambda x: x[1])
return modality, max_tokens
return modality
def get_encoder_budget(self) -> int:
return min(self.max_num_encoder_input_tokens, self.encoder_cache_size)
return min(self.encoder_compute_budget, self.encoder_cache_size)
def get_max_items(
self,