Adds truncate_prompt_tokens param for embeddings creation (#8999)

Signed-off-by: Flavia Beo <flavia.beo@ibm.com>
This commit is contained in:
Flávia Béo 2024-10-04 15:31:40 -03:00 committed by GitHub
parent 26aa325f4f
commit 0dcc8cbe5a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 76 additions and 5 deletions

View File

@ -144,3 +144,64 @@ async def test_batch_base64_embedding(embedding_client: openai.AsyncOpenAI,
0].embedding
assert responses_float.data[1].embedding == responses_default.data[
1].embedding
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_single_embedding_truncation(
embedding_client: openai.AsyncOpenAI, model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
# test single embedding
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 10})
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
input_tokens = [
1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728,
9901, 340, 2229, 385, 340, 315, 28741, 28804, 2
]
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_tokens,
extra_body={"truncate_prompt_tokens": 10})
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_single_embedding_truncation_invalid(
embedding_client: openai.AsyncOpenAI, model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
with pytest.raises(openai.BadRequestError):
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 8193})
assert "error" in embeddings.object
assert "truncate_prompt_tokens value is greater than max_model_len. "\
"Please, select a smaller truncation size." in embeddings.message

View File

@ -671,6 +671,7 @@ class EmbeddingRequest(OpenAIBaseModel):
encoding_format: Literal["float", "base64"] = "float"
dimensions: Optional[int] = None
user: Optional[str] = None
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
# doc: begin-embedding-pooling-params
additional_data: Optional[Any] = None

View File

@ -110,6 +110,17 @@ class OpenAIServingEmbedding(OpenAIServing):
request_id = f"embd-{random_uuid()}"
created_time = int(time.monotonic())
truncate_prompt_tokens = None
if request.truncate_prompt_tokens is not None:
if request.truncate_prompt_tokens <= self.max_model_len:
truncate_prompt_tokens = request.truncate_prompt_tokens
else:
return self.create_error_response(
"truncate_prompt_tokens value is "
"greater than max_model_len."
" Please, select a smaller truncation size.")
# Schedule the request and get the result generator.
generators: List[AsyncGenerator[EmbeddingRequestOutput, None]] = []
try:
@ -123,11 +134,9 @@ class OpenAIServingEmbedding(OpenAIServing):
pooling_params = request.to_pooling_params()
prompts = list(
self._tokenize_prompt_input_or_inputs(
request,
tokenizer,
request.input,
))
self._tokenize_prompt_input_or_inputs(request, tokenizer,
request.input,
truncate_prompt_tokens))
for i, prompt_inputs in enumerate(prompts):
request_id_item = f"{request_id}-{i}"