mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-28 07:07:14 +08:00
[perf] Speed up align sum kernels (#21079)
Signed-off-by: Himanshu Jaju <hj@mistral.ai>
This commit is contained in:
parent
005ae9be6c
commit
0ec82edda5
@ -33,15 +33,13 @@ def check_correctness(num_tokens, num_experts=256, block_size=256, topk=8):
|
||||
sorted_ids_triton = torch.empty(
|
||||
(max_num_tokens_padded,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
sorted_ids_triton.fill_(topk_ids.numel()) # fill with sentinel value
|
||||
expert_ids_triton = torch.zeros(
|
||||
expert_ids_triton = torch.empty(
|
||||
(max_num_tokens_padded // block_size,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
num_tokens_post_pad_triton = torch.empty((1,), dtype=torch.int32, device="cuda")
|
||||
|
||||
sorted_ids_vllm = torch.empty_like(sorted_ids_triton)
|
||||
sorted_ids_vllm.fill_(topk_ids.numel())
|
||||
expert_ids_vllm = torch.zeros_like(expert_ids_triton)
|
||||
expert_ids_vllm = torch.empty_like(expert_ids_triton)
|
||||
num_tokens_post_pad_vllm = torch.empty_like(num_tokens_post_pad_triton)
|
||||
|
||||
# 2. run implementations
|
||||
@ -102,7 +100,6 @@ def benchmark(num_tokens, num_experts, topk, provider):
|
||||
|
||||
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
||||
sorted_ids = torch.empty((max_num_tokens_padded,), dtype=torch.int32, device="cuda")
|
||||
sorted_ids.fill_(topk_ids.numel())
|
||||
max_num_m_blocks = max_num_tokens_padded // block_size
|
||||
expert_ids = torch.empty((max_num_m_blocks,), dtype=torch.int32, device="cuda")
|
||||
num_tokens_post_pad = torch.empty((1,), dtype=torch.int32, device="cuda")
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#include <torch/all.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <cub/cub.cuh>
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/Atomic.cuh>
|
||||
@ -19,9 +20,14 @@ __global__ void moe_align_block_size_kernel(
|
||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
|
||||
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
|
||||
size_t numel, int32_t* __restrict__ cumsum) {
|
||||
size_t numel, int32_t* __restrict__ cumsum, int32_t max_num_tokens_padded) {
|
||||
extern __shared__ int32_t shared_counts[];
|
||||
|
||||
// Initialize sorted_token_ids with numel
|
||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
||||
sorted_token_ids[it] = numel;
|
||||
}
|
||||
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int my_expert_start = warp_id * experts_per_warp;
|
||||
|
||||
@ -45,18 +51,27 @@ __global__ void moe_align_block_size_kernel(
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
cumsum[0] = 0;
|
||||
for (int i = 1; i <= num_experts; ++i) {
|
||||
int expert_count = 0;
|
||||
int warp_idx = (i - 1) / experts_per_warp;
|
||||
int expert_offset = (i - 1) % experts_per_warp;
|
||||
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
|
||||
// Compute prefix sum over token counts per expert
|
||||
using BlockScan = cub::BlockScan<int32_t, 1024>;
|
||||
__shared__ typename BlockScan::TempStorage temp_storage;
|
||||
|
||||
cumsum[i] =
|
||||
cumsum[i - 1] + CEILDIV(expert_count, block_size) * block_size;
|
||||
}
|
||||
*total_tokens_post_pad = cumsum[num_experts];
|
||||
int expert_count = 0;
|
||||
int expert_id = threadIdx.x;
|
||||
if (expert_id < num_experts) {
|
||||
int warp_idx = expert_id / experts_per_warp;
|
||||
int expert_offset = expert_id % experts_per_warp;
|
||||
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
|
||||
expert_count = CEILDIV(expert_count, block_size) * block_size;
|
||||
}
|
||||
|
||||
int cumsum_val;
|
||||
BlockScan(temp_storage).ExclusiveSum(expert_count, cumsum_val);
|
||||
if (expert_id <= num_experts) {
|
||||
cumsum[expert_id] = cumsum_val;
|
||||
}
|
||||
|
||||
if (expert_id == num_experts) {
|
||||
*total_tokens_post_pad = cumsum_val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
@ -67,6 +82,13 @@ __global__ void moe_align_block_size_kernel(
|
||||
expert_ids[i / block_size] = threadIdx.x;
|
||||
}
|
||||
}
|
||||
|
||||
// Fill remaining expert_ids with 0
|
||||
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
|
||||
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
|
||||
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
|
||||
expert_ids[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
@ -105,7 +127,12 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
||||
const scalar_t* __restrict__ topk_ids,
|
||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
|
||||
int32_t block_size, size_t numel) {
|
||||
int32_t block_size, size_t numel, int32_t max_num_tokens_padded) {
|
||||
// Initialize sorted_token_ids with numel
|
||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
||||
sorted_token_ids[it] = numel;
|
||||
}
|
||||
|
||||
const size_t tid = threadIdx.x;
|
||||
const size_t stride = blockDim.x;
|
||||
|
||||
@ -153,6 +180,13 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
// Fill remaining expert_ids with 0
|
||||
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
|
||||
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
|
||||
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
|
||||
expert_ids[i] = 0;
|
||||
}
|
||||
|
||||
for (size_t i = tid; i < numel; i += stride) {
|
||||
int32_t expert_id = topk_ids[i];
|
||||
int32_t rank_post_pad =
|
||||
@ -179,13 +213,17 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
int threads = 1024;
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
|
||||
// BlockScan uses 1024 threads and assigns one thread per expert.
|
||||
TORCH_CHECK(padded_num_experts < 1024,
|
||||
"padded_num_experts must be less than 1024");
|
||||
|
||||
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
|
||||
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
||||
// calc needed amount of shared mem for `cumsum` tensors
|
||||
auto options_int =
|
||||
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
|
||||
torch::Tensor cumsum_buffer =
|
||||
torch::zeros({num_experts + 1}, options_int);
|
||||
torch::empty({num_experts + 1}, options_int);
|
||||
bool small_batch_expert_mode =
|
||||
(topk_ids.numel() < 1024) && (num_experts <= 64);
|
||||
|
||||
@ -203,7 +241,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
|
||||
topk_ids.numel());
|
||||
topk_ids.numel(), sorted_token_ids.size(0));
|
||||
} else {
|
||||
auto align_kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
|
||||
|
||||
@ -217,7 +255,8 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts,
|
||||
padded_num_experts, experts_per_warp, block_size,
|
||||
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>());
|
||||
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>(),
|
||||
sorted_token_ids.size(0));
|
||||
|
||||
const int block_threads = std::min(256, (int)threads);
|
||||
const int num_blocks =
|
||||
|
||||
@ -111,6 +111,8 @@ def moe_align_block_size_triton(
|
||||
dtype=torch.int32,
|
||||
device=topk_ids.device)
|
||||
tokens_per_thread = cdiv(numel, num_experts)
|
||||
sorted_token_ids.fill_(numel)
|
||||
expert_ids.zero_()
|
||||
|
||||
moe_align_block_size_stage1[grid](
|
||||
topk_ids,
|
||||
@ -205,11 +207,8 @@ def moe_align_block_size(
|
||||
sorted_ids = torch.empty((max_num_tokens_padded, ),
|
||||
dtype=torch.int32,
|
||||
device=topk_ids.device)
|
||||
sorted_ids.fill_(topk_ids.numel())
|
||||
max_num_m_blocks = triton.cdiv(max_num_tokens_padded, block_size)
|
||||
# Expert ids must be zeroed out to prevent index out of bounds error while
|
||||
# mapping global expert ids to local expert ids in expert parallelism.
|
||||
expert_ids = torch.zeros((max_num_m_blocks, ),
|
||||
expert_ids = torch.empty((max_num_m_blocks, ),
|
||||
dtype=torch.int32,
|
||||
device=topk_ids.device)
|
||||
num_tokens_post_pad = torch.empty((1),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user