[FEAT][ROCm] Add AITER grouped topk for DeepSeekV2 (#18825)

Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
This commit is contained in:
vllmellm 2025-05-31 18:39:31 +08:00 committed by GitHub
parent c55d804672
commit 0f5e0d567e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 157 additions and 16 deletions

View File

@ -35,6 +35,15 @@ def test_rocm_aiter_biased_grouped_topk_custom_op_registration():
assert callable(torch.ops.vllm.rocm_aiter_biased_grouped_topk)
def test_rocm_aiter_grouped_topk_custom_op_registration():
"""Test that the custom op is correctly registered."""
# Check if the op exists in torch.ops.vllm
assert hasattr(torch.ops.vllm, 'rocm_aiter_grouped_topk')
# Check if the op is callable
assert callable(torch.ops.vllm.rocm_aiter_grouped_topk)
def test_rocm_aiter_biased_grouped_topk_torch_compile_compatibility():
"""Test that the op can be used with torch.compile."""
# Create test tensors
@ -120,3 +129,87 @@ def test_rocm_aiter_biased_grouped_topk_torch_compile_compatibility():
rtol=1e-2,
atol=1e-2)
assert torch.allclose(topk_ids_original, topk_ids_compiled)
def test_rocm_aiter_grouped_topk_torch_compile_compatibility():
"""Test that the op can be used with torch.compile."""
# Create test tensors
token = 64
expert = 256
num_expert_group = 8
topk = 8
topk_group = 4
renormalize = True
scoring_func = "softmax"
scale_factor = 1.0
gating_output = torch.randn((token, expert),
dtype=torch.bfloat16,
device="cuda")
device = gating_output.device
topk_ids = torch.empty((token, topk), dtype=torch.int32, device=device)
topk_weights = torch.empty((token, topk),
dtype=torch.float32,
device=device)
# Define a function that uses the op
def grouped_topk_fn(gating_output, topk_weights, topk_ids, scoring_func):
return torch.ops.vllm.rocm_aiter_grouped_topk(
gating_output, topk_weights, topk_ids, num_expert_group,
topk_group, renormalize, scoring_func, scale_factor)
# Verify the op's fake implementation
torch.library.opcheck(torch.ops.vllm.rocm_aiter_grouped_topk,
(gating_output, topk_weights, topk_ids),
kwargs={
"num_expert_group": num_expert_group,
"topk_group": topk_group,
"need_renorm": renormalize,
"scoring_func": scoring_func,
"routed_scaling_factor": scale_factor
},
test_utils=("test_faketensor"))
# Compile the function with appropriate settings
compiled_fn = torch.compile(grouped_topk_fn,
fullgraph=True,
backend="inductor",
mode="reduce-overhead",
dynamic=False)
topk_weights_original = torch.empty((token, topk),
dtype=torch.float32,
device=device)
topk_ids_original = torch.empty((token, topk),
dtype=torch.int32,
device=device)
topk_weights_compiled = torch.empty((token, topk),
dtype=torch.float32,
device=device)
topk_ids_compiled = torch.empty((token, topk),
dtype=torch.int32,
device=device)
# Run both compiled (V1 graph mode) and uncompiled versions (V1 eager mode)
grouped_topk_fn(gating_output, topk_weights_original, topk_ids_original,
scoring_func)
compiled_fn(gating_output, topk_weights_compiled, topk_ids_compiled,
scoring_func)
# Sort the results for comparison since the order might not be deterministic
topk_ids_original, indices_original = torch.sort(topk_ids_original)
topk_weights_original = torch.gather(topk_weights_original, 1,
indices_original)
topk_ids_compiled, indices_compiled = torch.sort(topk_ids_compiled)
topk_weights_compiled = torch.gather(topk_weights_compiled, 1,
indices_compiled)
# Verify results match
assert torch.allclose(topk_weights_original,
topk_weights_compiled,
rtol=1e-2,
atol=1e-2)
assert torch.allclose(topk_ids_original, topk_ids_compiled)

View File

@ -45,7 +45,7 @@ else:
FusedMoEPrepareAndFinalize = None # type: ignore
if is_rocm_aiter_moe_enabled():
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
rocm_aiter_biased_group_topk as grouped_topk)
rocm_aiter_grouped_topk as grouped_topk)
else:
from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
if current_platform.is_tpu():

View File

@ -140,6 +140,36 @@ def rocm_aiter_biased_grouped_topk_fake(
pass
def rocm_aiter_grouped_topk_impl(
gating_output: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
num_expert_group: int,
topk_group: int,
need_renorm: bool,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0 # mul to topk_weights
) -> None:
from aiter import grouped_topk
grouped_topk(gating_output, topk_weights, topk_ids, num_expert_group,
topk_group, need_renorm, scoring_func, routed_scaling_factor)
def rocm_aiter_grouped_topk_fake(
gating_output: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
num_expert_group: int,
topk_group: int,
need_renorm: bool,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0 # mul to topk_weights
) -> None:
pass
def rocm_aiter_fused_moe_impl(
hidden_states: torch.Tensor,
w1: torch.Tensor,
@ -218,36 +248,54 @@ if current_platform.is_rocm():
dispatch_key=current_platform.dispatch_key,
)
direct_register_custom_op(
op_name="rocm_aiter_grouped_topk",
op_func=rocm_aiter_grouped_topk_impl,
mutates_args=["topk_weights", "topk_ids"],
fake_impl=rocm_aiter_grouped_topk_fake,
dispatch_key=current_platform.dispatch_key,
)
def rocm_aiter_biased_group_topk(
def rocm_aiter_grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
scoring_func: str = "sigmoid",
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None
) -> tuple[torch.Tensor, torch.Tensor]:
assert scoring_func == "sigmoid", (
"rocm_aiter_biased_group_topk only supports 'sigmoid' scoring_func.")
assert e_score_correction_bias is not None, (
"'e_score_correction_bias' must not be None.")
token = hidden_states.shape[0]
device = hidden_states.device
topk_ids = torch.empty((token, topk), dtype=torch.int32, device=device)
topk_weights = torch.empty((token, topk),
dtype=torch.float32,
device=device)
torch.ops.vllm.rocm_aiter_biased_grouped_topk(
gating_output,
e_score_correction_bias,
topk_weights,
topk_ids,
num_expert_group,
topk_group,
renormalize,
)
if e_score_correction_bias is not None:
torch.ops.vllm.rocm_aiter_biased_grouped_topk(
gating_output,
e_score_correction_bias,
topk_weights,
topk_ids,
num_expert_group,
topk_group,
renormalize,
)
else:
assert (scoring_func == "softmax" or scoring_func == "sigmoid")
torch.ops.vllm.rocm_aiter_grouped_topk(
gating_output,
topk_weights,
topk_ids,
num_expert_group,
topk_group,
renormalize,
scoring_func,
)
return topk_weights, topk_ids