mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-30 11:05:16 +08:00
[Bugfix]: Fix glm46 awq marlin moe wna16 compatibility (#30210)
Signed-off-by: baonudesifeizhai <baonudesifeizhai@gmail.com>
This commit is contained in:
parent
03416eada6
commit
1166c31cc7
@ -895,6 +895,48 @@ def get_moe_configs(
|
||||
return None
|
||||
|
||||
|
||||
def _ensure_block_size_k_divisible(
|
||||
size_k: int, block_size_k: int, group_size: int
|
||||
) -> int:
|
||||
"""Ensure block_size_k is a divisor of size_k and divisible by group_size.
|
||||
|
||||
This ensures BLOCK_SIZE_K compatibility with MoeWNA16 CUDA kernel which
|
||||
requires size_k % BLOCK_SIZE_K == 0 and BLOCK_SIZE_K % group_size == 0.
|
||||
|
||||
Args:
|
||||
size_k: The size_k dimension that must be divisible by result.
|
||||
block_size_k: Preferred block size (will be adjusted if needed).
|
||||
group_size: The result must be divisible by this.
|
||||
|
||||
Returns:
|
||||
A valid BLOCK_SIZE_K that divides size_k and is divisible by group_size.
|
||||
"""
|
||||
# Fast path: already valid
|
||||
if size_k % block_size_k == 0 and block_size_k % group_size == 0:
|
||||
return block_size_k
|
||||
|
||||
# Find the largest value that:
|
||||
# 1. Divides size_k (size_k % candidate == 0)
|
||||
# 2. Is divisible by group_size (candidate % group_size == 0)
|
||||
# 3. Is <= block_size_k (prefer smaller values close to block_size_k)
|
||||
#
|
||||
# Strategy: Search from min(block_size_k, size_k) down to group_size,
|
||||
# stepping by group_size to ensure divisibility by group_size
|
||||
max_search = min(block_size_k, size_k)
|
||||
start = (max_search // group_size) * group_size
|
||||
for candidate in range(start, group_size - 1, -group_size):
|
||||
if size_k % candidate == 0:
|
||||
return candidate
|
||||
|
||||
# Fallback: if group_size divides size_k, use it
|
||||
# This should always be true with correct group_size configuration
|
||||
if size_k % group_size == 0:
|
||||
return group_size
|
||||
|
||||
# This should not happen with correct group_size, but ensure divisibility
|
||||
return size_k
|
||||
|
||||
|
||||
def get_moe_wna16_block_config(
|
||||
config: dict[str, int],
|
||||
use_moe_wna16_cuda: bool,
|
||||
@ -960,6 +1002,9 @@ def get_moe_wna16_block_config(
|
||||
# at the same time.
|
||||
block_size_n = 1024
|
||||
|
||||
# Ensure BLOCK_SIZE_K is a divisor of size_k for CUDA kernel compatibility
|
||||
block_size_k = _ensure_block_size_k_divisible(size_k, block_size_k, group_size)
|
||||
|
||||
return {"BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k}
|
||||
|
||||
|
||||
|
||||
@ -60,7 +60,7 @@ class MoeWNA16Config(QuantizationConfig):
|
||||
|
||||
if self.linear_quant_method == "gptq":
|
||||
self.use_marlin = GPTQMarlinConfig.is_gptq_marlin_compatible(full_config)
|
||||
elif self.linear_quant_method == "awq":
|
||||
elif self.linear_quant_method in ("awq", "awq_marlin"):
|
||||
capability_tuple = current_platform.get_device_capability()
|
||||
device_capability = (
|
||||
-1 if capability_tuple is None else capability_tuple.to_int()
|
||||
@ -107,7 +107,7 @@ class MoeWNA16Config(QuantizationConfig):
|
||||
if linear_quant_method == "gptq":
|
||||
has_zp = not cls.get_from_keys(config, ["sym"])
|
||||
modules_to_not_convert = []
|
||||
elif linear_quant_method == "awq":
|
||||
elif linear_quant_method in ("awq", "awq_marlin"):
|
||||
has_zp = cls.get_from_keys(config, ["zero_point"])
|
||||
modules_to_not_convert = cls.get_from_keys_or(
|
||||
config, ["modules_to_not_convert"], None
|
||||
@ -184,7 +184,7 @@ class MoeWNA16Config(QuantizationConfig):
|
||||
return GPTQConfig.from_config(self.full_config).get_quant_method(
|
||||
layer, prefix
|
||||
)
|
||||
elif self.linear_quant_method == "awq":
|
||||
elif self.linear_quant_method in ("awq", "awq_marlin"):
|
||||
if self.use_marlin and check_marlin_supports_layer(
|
||||
layer, self.group_size
|
||||
):
|
||||
@ -468,7 +468,8 @@ class MoeWNA16Method(FusedMoEMethodBase):
|
||||
shard_size = layer.intermediate_size_per_partition
|
||||
|
||||
# convert gptq and awq weight to a standard format
|
||||
if layer.quant_config.linear_quant_method == "awq":
|
||||
# awq_marlin uses the same weight format as awq
|
||||
if layer.quant_config.linear_quant_method in ("awq", "awq_marlin"):
|
||||
assert layer.quant_config.weight_bits == 4
|
||||
if "weight" in weight_name:
|
||||
loaded_weight = convert_awq_tensor(loaded_weight, "qweight")
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user