Add support for Cohere's Command-R model (#3433)

Co-authored-by: José Maria Pombal <jose.pombal@unbabel.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
zeppombal 2024-03-27 21:19:32 +00:00 committed by GitHub
parent 45b6ef6513
commit 1182607e18
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 338 additions and 0 deletions

View File

@ -17,6 +17,7 @@ _MODELS = {
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),

View File

@ -0,0 +1,337 @@
# coding=utf-8
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is based on the LLama model definition file in transformers
"""PyTorch Cohere model."""
from typing import List, Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import CohereConfig
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from vllm.attention import Attention, AttentionMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.linear import (LinearMethodBase,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None
self.variance_epsilon = eps
def forward(self, hidden_states, residuals=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
mean = hidden_states.mean(-1, keepdim=True)
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
hidden_states = (hidden_states -
mean) * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = self.weight.to(torch.float32) * hidden_states
if self.bias is not None:
hidden_states = hidden_states + self.bias.to(torch.float32)
return hidden_states.to(input_dtype), residuals
ALL_LAYERNORM_LAYERS.append(LayerNorm)
# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
class CohereMLP(nn.Module):
def __init__(
self,
config,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
linear_method=linear_method,
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
linear_method=linear_method,
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class CohereAttention(nn.Module):
def __init__(
self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
tp_size = get_tensor_model_parallel_world_size()
self.config = config
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.total_num_heads = config.num_attention_heads
self.num_heads = self.total_num_heads // tp_size
self.head_dim = self.hidden_size // self.total_num_heads
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.rope_scaling = getattr(config, "rope_scaling", None)
self.is_causal = True
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
rope_scaling=self.rope_scaling,
is_neox_style=False,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class CohereDecoderLayer(nn.Module):
def __init__(self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = CohereAttention(config, linear_method=linear_method)
self.mlp = CohereMLP(config, linear_method=linear_method)
self.input_layernorm = LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states_attention = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states_mlp = self.mlp(hidden_states)
# Add everything together
hidden_states = residual + hidden_states_attention + hidden_states_mlp
return hidden_states, residual
class CohereModel(nn.Module):
def __init__(
self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.layers = nn.ModuleList([
CohereDecoderLayer(config, linear_method=linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
attn_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class CohereForCausalLM(nn.Module):
def __init__(
self,
config: CohereConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.unpadded_vocab_size = config.vocab_size
self.linear_method = linear_method
self.logits_processor = LogitsProcessor(config.vocab_size,
scale=config.logit_scale)
self.model = CohereModel(config, linear_method)
self.sampler = Sampler()
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.model.embed_tokens.weight,
hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params = set()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
for param_name, shard_name, shard_id in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)