mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 21:55:50 +08:00
Add support for Cohere's Command-R model (#3433)
Co-authored-by: José Maria Pombal <jose.pombal@unbabel.com> Co-authored-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
45b6ef6513
commit
1182607e18
@ -17,6 +17,7 @@ _MODELS = {
|
||||
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
|
||||
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
|
||||
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
|
||||
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
|
||||
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
|
||||
|
||||
337
vllm/model_executor/models/commandr.py
Normal file
337
vllm/model_executor/models/commandr.py
Normal file
@ -0,0 +1,337 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This file is based on the LLama model definition file in transformers
|
||||
"""PyTorch Cohere model."""
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from transformers import CohereConfig
|
||||
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
|
||||
def __init__(self, hidden_size, eps=1e-5, bias=False):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, residuals=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
mean = hidden_states.mean(-1, keepdim=True)
|
||||
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = (hidden_states -
|
||||
mean) * torch.rsqrt(variance + self.variance_epsilon)
|
||||
hidden_states = self.weight.to(torch.float32) * hidden_states
|
||||
if self.bias is not None:
|
||||
hidden_states = hidden_states + self.bias.to(torch.float32)
|
||||
return hidden_states.to(input_dtype), residuals
|
||||
|
||||
|
||||
ALL_LAYERNORM_LAYERS.append(LayerNorm)
|
||||
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
|
||||
class CohereMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
[self.intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.down_proj = RowParallelLinear(
|
||||
self.intermediate_size,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class CohereAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: CohereConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.config = config
|
||||
self.attention_dropout = config.attention_dropout
|
||||
self.hidden_size = config.hidden_size
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.total_num_kv_heads = config.num_key_value_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.rope_theta = config.rope_theta
|
||||
self.rope_scaling = getattr(config, "rope_scaling", None)
|
||||
self.is_causal = True
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
self.hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
rope_scaling=self.rope_scaling,
|
||||
is_neox_style=False,
|
||||
)
|
||||
self.attn = Attention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class CohereDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: CohereConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.self_attn = CohereAttention(config, linear_method=linear_method)
|
||||
|
||||
self.mlp = CohereMLP(config, linear_method=linear_method)
|
||||
self.input_layernorm = LayerNorm(config.hidden_size,
|
||||
eps=config.layer_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
hidden_states_attention = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
hidden_states_mlp = self.mlp(hidden_states)
|
||||
# Add everything together
|
||||
hidden_states = residual + hidden_states_attention + hidden_states_mlp
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class CohereModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: CohereConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
|
||||
config.hidden_size)
|
||||
self.layers = nn.ModuleList([
|
||||
CohereDecoderLayer(config, linear_method=linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
attn_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CohereForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: CohereConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
self.linear_method = linear_method
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size,
|
||||
scale=config.logit_scale)
|
||||
self.model = CohereModel(config, linear_method)
|
||||
self.sampler = Sampler()
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.model.embed_tokens.weight,
|
||||
hidden_states, sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(
|
||||
self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None,
|
||||
):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params = set()
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
for param_name, shard_name, shard_id in stacked_params_mapping:
|
||||
if shard_name not in name:
|
||||
continue
|
||||
name = name.replace(shard_name, param_name)
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
Loading…
x
Reference in New Issue
Block a user