Add gather_indexer_k_quant_cache kernel (#25931)

Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
Signed-off-by: Simon Mo <simon.mo@hey.com>
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Yongye Zhu <zyy1102000@gmail.com>
Co-authored-by: Chen Zhang <zhangch99@outlook.com>
This commit is contained in:
Barry Kang 2025-10-08 12:58:57 +08:00 committed by GitHub
parent cd9890544b
commit 127c8b782a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 146 additions and 0 deletions

View File

@ -64,3 +64,11 @@ void indexer_k_quant_and_cache(
torch::Tensor& slot_mapping, // [num_tokens] torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size int64_t quant_block_size, // quantization block size
const std::string& scale_fmt); const std::string& scale_fmt);
// Extract function to gather quantized K cache
void cp_gather_indexer_k_quant_cache(
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& dst_k, // [num_tokens, head_dim]
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
const torch::Tensor& block_table, // [batch_size, num_blocks]
const torch::Tensor& cu_seq_lens); // [batch_size + 1]

View File

@ -572,6 +572,70 @@ __global__ void indexer_k_quant_and_cache_kernel(
} }
} }
template <int BLOCK_Y_SIZE>
__global__ void cp_gather_indexer_k_quant_cache_kernel(
const char* __restrict__ kv_cache, // [num_blocks, block_size,
// cache_stride]
char* __restrict__ dst_k, // [num_tokens, head_dim]
char* __restrict__ dst_scale, // [num_tokens, head_dim / quant_block_size *
// 4]
const int* __restrict__ block_table, // [batch_size, num_blocks]
const int* __restrict__ cu_seq_lens, // [batch_size + 1]
const int batch_size, // batch size
const int64_t token_stride, // stride for each token in dst_k
const int64_t head_dim, // dimension of each head
const int64_t block_stride, // stride for each block in kv_cache
const int64_t cache_token_stride, // stride for each token in kv_cache
const int64_t cache_block_size, // num_tokens for each block in kv_cache
const int num_blocks, // number of blocks
const int num_tokens, // number of tokens
const int quant_block_size // quantization block size
) {
constexpr int VEC_SIZE = sizeof(float4) / sizeof(char);
const int token_idx = blockIdx.x * blockDim.y + threadIdx.y;
const int head_idx = (blockIdx.y * blockDim.x + threadIdx.x) * VEC_SIZE;
// Find batch index within a block
__shared__ int batch_idx[BLOCK_Y_SIZE];
for (int iter = 0; iter < cuda_utils::ceil_div(batch_size, int(blockDim.x));
iter++) {
int tid = iter * blockDim.x + threadIdx.x;
if (tid < batch_size) {
const int seq_start = cu_seq_lens[tid];
const int seq_end = cu_seq_lens[tid + 1];
if (token_idx >= seq_start && token_idx < seq_end) {
batch_idx[threadIdx.y] = tid;
}
}
}
#ifndef USE_ROCM
__syncwarp();
#endif
if (head_idx >= head_dim || token_idx >= num_tokens) {
return;
}
const int inbatch_seq_idx = token_idx - cu_seq_lens[batch_idx[threadIdx.y]];
const int block_idx = block_table[batch_idx[threadIdx.y] * num_blocks +
inbatch_seq_idx / cache_block_size];
const int64_t src_block_offset = block_idx * block_stride;
const int64_t cache_inblock_offset =
(inbatch_seq_idx % cache_block_size) * head_dim + head_idx;
const int64_t src_inblock_offset = src_block_offset + cache_inblock_offset;
const int64_t dst_inblock_offset = token_idx * token_stride + head_idx;
reinterpret_cast<float4*>(dst_k)[dst_inblock_offset / VEC_SIZE] =
reinterpret_cast<const float4*>(kv_cache)[src_inblock_offset / VEC_SIZE];
;
if (threadIdx.x == 0) {
const int64_t src_scale_offset =
src_block_offset + cache_block_size * head_dim +
cache_inblock_offset * 4 / quant_block_size;
reinterpret_cast<float*>(dst_scale)[dst_inblock_offset / quant_block_size] =
reinterpret_cast<const float*>(kv_cache)[src_scale_offset / 4];
}
}
} // namespace vllm } // namespace vllm
// KV_T is the data type of key and value tensors. // KV_T is the data type of key and value tensors.
@ -1173,3 +1237,59 @@ void indexer_k_quant_and_cache(
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3", DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
CALL_INDEXER_K_QUANT_AND_CACHE); CALL_INDEXER_K_QUANT_AND_CACHE);
} }
// Macro to dispatch the kernel based on the data amount.
#define CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(BLOCK_Y_SIZE) \
vllm::cp_gather_indexer_k_quant_cache_kernel<BLOCK_Y_SIZE> \
<<<dim3((num_tokens + BLOCK_Y_SIZE - 1) / BLOCK_Y_SIZE, \
(head_dim + 8 * vec_size - 1) / (8 * vec_size)), \
dim3(8, BLOCK_Y_SIZE), 0, stream>>>( \
reinterpret_cast<char*>(kv_cache.data_ptr()), \
reinterpret_cast<char*>(dst_k.data_ptr()), \
reinterpret_cast<char*>(dst_scale.data_ptr()), \
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
batch_size, dst_k.stride(0), dst_k.size(1), kv_cache.stride(0), \
kv_cache.stride(1), kv_cache.size(1), block_table.size(1), \
num_tokens, quant_block_size);
void cp_gather_indexer_k_quant_cache(
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& dst_k, // [num_tokens, head_dim]
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
const torch::Tensor& block_table, // [batch_size, num_blocks]
const torch::Tensor& cu_seq_lens // [batch_size + 1]
) {
int batch_size = block_table.size(0);
int num_tokens = dst_k.size(0);
int head_dim = dst_k.size(1);
int quant_block_size = head_dim * 4 / dst_scale.size(1);
TORCH_CHECK(kv_cache.device() == dst_k.device(),
"kv_cache and dst_k must be on the same device");
TORCH_CHECK(kv_cache.device() == dst_scale.device(),
"kv_cache and dst_scale must be on the same device");
TORCH_CHECK(kv_cache.device() == block_table.device(),
"kv_cache and block_table must be on the same device");
TORCH_CHECK(kv_cache.device() == cu_seq_lens.device(),
"kv_cache and cu_seq_lens must be on the same device");
TORCH_CHECK(head_dim % quant_block_size == 0,
"head_dim must be divisible by quant_block_size");
constexpr int vec_size = 16;
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_cache));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (num_tokens < 32) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(1);
} else if (num_tokens < 64) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(2);
} else if (num_tokens < 128) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(4);
} else if (num_tokens < 256) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(8);
} else if (num_tokens < 512) {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(16);
} else {
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(32);
}
}

View File

@ -727,6 +727,12 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
"int quant_block_size, str kv_cache_dtype) -> ()"); "int quant_block_size, str kv_cache_dtype) -> ()");
cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA, cache_ops.impl("indexer_k_quant_and_cache", torch::kCUDA,
&indexer_k_quant_and_cache); &indexer_k_quant_and_cache);
cache_ops.def(
"cp_gather_indexer_k_quant_cache(Tensor kv_cache, Tensor! dst_k, Tensor! "
"dst_scale, Tensor block_table, Tensor cu_seq_lens) -> ()");
cache_ops.impl("cp_gather_indexer_k_quant_cache", torch::kCUDA,
&cp_gather_indexer_k_quant_cache);
} }
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) { TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {

View File

@ -2108,6 +2108,18 @@ def indexer_k_quant_and_cache(
) )
def cp_gather_indexer_k_quant_cache(
kv_cache: torch.Tensor,
dst_k: torch.Tensor,
dst_scale: torch.Tensor,
block_table: torch.Tensor,
cu_seq_lens: torch.Tensor,
) -> None:
torch.ops._C_cache_ops.cp_gather_indexer_k_quant_cache(
kv_cache, dst_k, dst_scale, block_table, cu_seq_lens
)
def get_device_attribute(attribute: int, device: int) -> int: def get_device_attribute(attribute: int, device: int) -> int:
return torch.ops._C_cuda_utils.get_device_attribute(attribute, device) return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)