[CI/Build] Fix some V1 tests not being run (#25569)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
This commit is contained in:
Cyrus Leung 2025-09-26 20:52:36 +08:00 committed by yewentao256
parent d3c732e985
commit 129a643b4c
2 changed files with 8 additions and 95 deletions

View File

@ -300,10 +300,12 @@ steps:
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_kv_sharing.py
- pytest -v -s v1/test_metrics_reader.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_metrics_reader.py
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine

View File

@ -1,17 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest.mock import Mock
import torch
from vllm.v1.attention.backends.flash_attn import (
FlashAttentionBackend, FlashAttentionMetadataBuilder)
from vllm.v1.attention.backends.flex_attention import (
FlexAttentionBackend, FlexAttentionMetadataBuilder)
from vllm.v1.kv_cache_interface import FullAttentionSpec, KVCacheGroupSpec
from vllm.v1.worker.utils import (AttentionGroup,
initialize_kv_cache_for_kv_sharing)
from vllm.v1.worker.utils import add_kv_sharing_layers_to_kv_cache_groups
def new_kv_cache_spec():
@ -37,56 +30,17 @@ def test_initialize_kv_cache_for_kv_sharing_different_attn_groups():
new_kv_cache_spec()),
]
attn_groups = [
# KV cache group 0 has two attention groups
[
AttentionGroup(
backend=FlashAttentionBackend,
metadata_builder=Mock(spec=FlashAttentionMetadataBuilder),
layer_names=["model.layers.0"],
),
AttentionGroup(
backend=FlexAttentionBackend,
metadata_builder=Mock(spec=FlexAttentionMetadataBuilder),
layer_names=["model.layers.1"],
),
],
]
# Only layers 0 and 1 will have KV caches allocated
kv_caches = {
"model.layers.0": torch.zeros(1, 2, 3),
"model.layers.1": torch.ones(1, 2, 3),
}
initialize_kv_cache_for_kv_sharing(
add_kv_sharing_layers_to_kv_cache_groups(
shared_kv_cache_layers=shared_kv_cache_layers,
kv_cache_groups=kv_cache_groups,
kv_caches=kv_caches,
attn_groups=attn_groups,
)
# Check that the KV caches were shared correctly
assert kv_caches["model.layers.2"].data_ptr(
) == kv_caches["model.layers.0"].data_ptr()
assert kv_caches["model.layers.3"].data_ptr(
) == kv_caches["model.layers.1"].data_ptr()
# Check that the layers were added to the correct KV cache group
assert len(kv_cache_groups) == 1
assert kv_cache_groups[0].layer_names == [
"model.layers.0", "model.layers.1", "model.layers.2", "model.layers.3"
]
# Check that the layers were added to the attention groups
assert len(attn_groups) == 1 and len(attn_groups[0]) == 2
assert attn_groups[0][0].layer_names == [
"model.layers.0", "model.layers.2"
]
assert attn_groups[0][1].layer_names == [
"model.layers.1", "model.layers.3"
]
def test_initialize_kv_cache_for_kv_sharing_same_attn_groups():
"""
@ -103,48 +57,17 @@ def test_initialize_kv_cache_for_kv_sharing_same_attn_groups():
new_kv_cache_spec()),
]
attn_groups = [
# KV cache group 0 has a single attention group
# as all layers have the same flash attention backend
[
AttentionGroup(
backend=FlashAttentionBackend,
metadata_builder=Mock(spec=FlashAttentionMetadataBuilder),
layer_names=["model.layers.0", "model.layers.1"],
),
],
]
kv_caches = {
"model.layers.0": torch.zeros(1, 2, 3),
"model.layers.1": torch.ones(1, 2, 3),
}
initialize_kv_cache_for_kv_sharing(
add_kv_sharing_layers_to_kv_cache_groups(
shared_kv_cache_layers=shared_kv_cache_layers,
kv_cache_groups=kv_cache_groups,
kv_caches=kv_caches,
attn_groups=attn_groups,
)
# Check that the KV caches were shared correctly
assert kv_caches["model.layers.2"].data_ptr(
) == kv_caches["model.layers.0"].data_ptr()
assert kv_caches["model.layers.3"].data_ptr(
) == kv_caches["model.layers.1"].data_ptr()
# Check that the layers were added to the correct KV cache group
assert len(kv_cache_groups) == 1
assert kv_cache_groups[0].layer_names == [
"model.layers.0", "model.layers.1", "model.layers.2", "model.layers.3"
]
# Check that the layers were added to the attention groups
assert len(attn_groups) == 1 and len(attn_groups[0]) == 1
assert attn_groups[0][0].layer_names == [
"model.layers.0", "model.layers.1", "model.layers.2", "model.layers.3"
]
def test_initialize_kv_cache_for_kv_sharing_no_attn_groups():
"""
@ -162,23 +85,11 @@ def test_initialize_kv_cache_for_kv_sharing_no_attn_groups():
KVCacheGroupSpec(["model.layers.1"], new_kv_cache_spec()),
]
kv_caches = {
"model.layers.0": torch.zeros(1, 2, 3),
"model.layers.1": torch.ones(1, 2, 3),
}
initialize_kv_cache_for_kv_sharing(
add_kv_sharing_layers_to_kv_cache_groups(
shared_kv_cache_layers=shared_kv_cache_layers,
kv_cache_groups=kv_cache_groups,
kv_caches=kv_caches,
)
# Check that the KV caches were shared correctly
assert kv_caches["model.layers.2"].data_ptr(
) == kv_caches["model.layers.0"].data_ptr()
assert kv_caches["model.layers.3"].data_ptr(
) == kv_caches["model.layers.1"].data_ptr()
# Check that the layers were added to the correct KV cache group
assert len(kv_cache_groups) == 2
assert kv_cache_groups[0].layer_names == [